EUREKA MATH².

Algebra I | North Carolina Standard Course of Study Correlation to Eureka Math^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver *exponentially better* math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

The Real Number System

Extend the properties of exponents to rational exponents.

North Carolina Standard Course of Study	Aligned Components of <i>Eureka Math</i> ²

NC.M1.N-RN.2	8 M1 Topic B: Properties and Definitions of Exponents
Rewrite algebraic expressions with	
integer exponents using the properties	
of exponents.	

Seeing Structure in Expressions

Interpret the structure of expressions.

North Carolina Standard Course of Study	Aligned Components of <i>Eureka Math</i> ²
NC.M1.A-SSE.1	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	
NC.M1.A-SSE.1a	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Identify and interpret parts of a linear, exponential, or quadratic expression, including terms, factors, coefficients, and exponents.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Topic D: Comparing Linear and Exponential Models
	Math 1 M1 Lesson 4: Interpreting Linear Expressions

Aligned Components of <i>Eureka Math²</i>
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 18: Modeling Populations
A1 M5 Topic D: Comparing Linear and Exponential Models

North Carolina Standard

A 1: - -.

Seeing Structure in Expressions

Write expressions in equivalent forms to solve problems.

North Carolina Standard Course of Study	Aligned Components of <i>Eureka Math</i> ²
NC.M1.A-SSE.3	A1 M4 Topic B: Factoring
Write an equivalent form of a quadratic expression $ax^2 + bx + c$, where a is an integer, by factoring to reveal the solutions of the equation or the zeros of the function the expression defines.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

© 2024 Great Minds PBC | greatminds.org

A1 | North Carolina Standard Course of Study Correlation to Eureka Math²

Arithmetic with Polynomial Expressions

Perform arithmetic operations on polynomials.

North Carolina Standard Course of Study

Aligned Components of Eureka Math²

NC.M1.A-APR.1	A1 M1 Lesson 3: Polynomial Expressions
Build an understanding that operations with polynomials are comparable to operations with integers by adding and subtracting quadratic expressions and by adding, subtracting, and multiplying linear expressions.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities

Arithmetic with Polynomial Expressions

Understand the relationship between zeros and factors of polynomials.

North Carolina Standard Course of Study	Aligned Components of <i>Eureka Math</i> ²
NC.M1.A-APR.3	A1 M4 Lesson 10: Zeros of Functions
Understand the relationships among the factors of a quadratic expression, the solutions of a quadratic equation, and the zeros of a quadratic function.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

Creating Equations

Create equations that describe numbers or relationships.

North Carolina Standard Course of Study Aligned Components of *Eureka Math*²

NC.M1.A-CED.1	A1 M1 Lesson 7: Printing Presses
Create equations and inequalities in one variable that represent linear,	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
and use them to solve problems.	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	Supplemental material is necessary to address creating inequalities that represent exponential and quadratic relationships and using them to solve problems.
NC.M1.A-CED.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create and graph equations	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
in two variables to represent linear,	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
exponential, and quadratic relationships between quantities.	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Course of Study	
NC.M1.A-CED.3 Create systems of linear equations and inequalities to model situations in context.	A1 M2 Lesson 7: Low-Flow Showerhead A1 M2 Lesson 11: Applications of Systems of Linear Equations A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
NC.M1.A-CED.4 Solve for a quantity of interest in formulas used in science and mathematics using the same reasoning as in solving equations.	A1 M1 Lesson 12: Rearranging Formulas A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

North Carolina Standard Course of Study

Aligned Components of Eureka Math²

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.A-REI.1	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Justify a chosen solution method and each step of the solving process for	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
mathematical reasoning.	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.A-REI.1 continued	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M4 Lesson 16: Solving Quadratic Equations
	Supplemental material is necessary to address justifying each step of the solving process for quadratic equations.

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.A-REI.3	A1 M1 Lesson 7: Printing Presses
Solve linear equations and inequalities in one variable.	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
	A1 M1 Lesson 9: Solving Linear Equations in One Variable
	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
NC.M1.A-REI.4	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
Solve for the real solutions of quadratic equations in one variable by taking square roots and factoring.	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.A-REI.4 continued	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M4 Lesson 16: Solving Quadratic Equations
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

Solve systems of equations.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.A-REI.5	A1 M2 Lesson 9: A New Way to Solve Systems
Explain why replacing one equation in a system of linear equations by the sum of that equation and a multiple of the other produces a system with the same solutions.	
NC.M1.A-REI.6	A1 M2 Lesson 7: Low-Flow Showerhead
Use tables, graphs, or algebraic methods (substitution and elimination) to find approximate or exact solutions to systems of linear equations and	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
interpret solutions in terms of a context.	A1 M2 Lesson 11: Applications of Systems of Equations

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.A-REI.10	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Understand that the graph of a two variable equation represents the set of all solutions to the equation.	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
NC.M1.A-REI.11	A1 M3 Lesson 10: Using Graphs to Solve Equations
Build an understanding of why the	A1 M4 Lesson 24: Another Look at Systems of Equations
x-coordinates of the points where the	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
graphs of two linear, exponential, and/or quadratic equations $y = f(x)$ and $y = g(x)$	A1 M5 Lesson 20: Comparing Growth of Functions
intersect are the solutions of the equation \tilde{a}	
f(x) = g(x) and approximate solutions using araphing technology or successive	
approximations with a table of values.	
NC.M1.A-REI.12	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
Represent the solutions of a linear inequality or a system of linear inequalities graphically as a region of the plane.	A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
	A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
	A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
	A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
	A1 M6 Lesson 6: Designing a Fundraiser

Interpreting Functions

Understand the concept of a function and use function notation.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.F-IF.1	A1 M3 Topic A: Functions and Their Graphs
Build an understanding that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range by recognizing that: if f is a function and x is an element of its domain, then $f(x)denotes the output of f correspondingto the input x. The graph of f is the graphof the equation y = f(x).$	
NC.M1.F-IF.2	A1 M3 Lesson 1: The Definition of a Function
Use function notation to evaluate linear,	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
quadratic, and exponential functions for inputs in their domains, and interpret	A1 M3 Lesson 6: Representations of Functions
statements that use function notation	A1 M4 Lesson 10: Zeros of Functions
in terms of a context.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.F-IF.2 continued	A1 M5 Lesson 3: Recursive Formulas for Sequences A1 M5 Lesson 4: Explicit Formulas for Sequences A1 M5 Lesson 7: Sierpinski Triangle A1 M5 Topic C: Exponential Growth and Decay A1 M5 Topic D: Comparing Linear and Exponential Models
NC.M1.F-IF.3 Recognize that recursively and explicitly defined sequences are functions whose domain is a subset of the integers, the terms of an arithmetic sequence are a subset of the range of a linear function, and the terms of a geometric sequence are a subset of the range of an exponential function.	A1 M5 Lesson 1: Exploring Patterns A1 M5 Lesson 2: The Recursive Challenge A1 M5 Lesson 3: Recursive Formulas for Sequences A1 M5 Lesson 4: Explicit Formulas for Sequences A1 M5 Lesson 5: Arithmetic and Geometric Sequences A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

North Carolina Standard Course of Study

Aligned Components of Eureka Math²

NC.M1.F-IF.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
Interpret key features of graphs, tables,	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
and verbal descriptions in context	A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
in applications relating two quantities,	A1 M3 Lesson 11: Comparing Functions
including: intercepts; intervals where	A1 M3 Lesson 12: Mars Curiosity Rover
the function is increasing, decreasing,	A1 M4 Lesson 1: Falling Objects
and minimums.	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
NC.M1.F-IF.5	A1 M3 Lesson 3: The Graph of a Function
Interpret a function in terms of the context by relating its domain and range to its graph and, where applicable, to the quantitative relationship it describes.	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

Course of Study	Aligned Components of <i>Eureka Math</i> ²
NC.M1.F-IF.6	A1 M4 Lesson 1: Falling Objects
Calculate and interpret the average	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
rate of change over a specified interval for a function presented numerically, graphically, and/or symbolically.	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M5 Lesson 19: Analyzing Exponential Growth
	A1 M5 Lesson 20: Comparing Growth of Functions
	A1 M5 Lesson 24: Modeling an Invasive Species Population

North Carolina Standard

Interpreting Functions

Analyze functions using different representations.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.F-IF.7	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Analyze linear, exponential, and quadratic functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; rate of change; intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; and end behavior.	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$ A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations A1 M3 Lesson 6: Representations of Functions A1 M4 Lesson 4: Graphs of Quadratic Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 24: Another Look at Systems of Equations
	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

NC.M1.F-IF.8 Use equivalent expressions to reveal and explain different properties of a function.	This standard is fully addressed by the lessons aligned to its subsections.
NC.M1.F-IF.8a Rewrite a quadratic function to reveal and explain different key features of the function.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
NC.M1.F-IF.8b Interpret and explain growth and decay rates for an exponential function.	A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations
NC.M1.F-IF.9 Compare key features of two functions (linear, quadratic, or exponential) each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).	A1 M3 Lesson 11: Comparing Functions A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions Supplemental material is necessary to address comparing quadratic and exponential functions with different representations.

Aligned Components of Eureka Math²

North Carolina Standard Course of Study

Building Functions

Build a function that models a relationship between two quantities.

North Carolina Standard Aligned Components of Eureka Math² Course of Study Aligned Components of Eureka Math²

NC.M1.F-BF.1	This standard is addressed by the lessons aligned to its subsections.
Write a function that describes a relationship between two quantities.	
NC.M1.F-BF.1a Build linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two ordered pairs (include reading these from a table).	A1 M5 Topic A: Arithmetic and Geometric Sequences A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 15: Calculating Interest A1 M6 Lesson 4: The Deal
NC.M1.F-BF.1b Build a function that models a relationship between two quantities by combining linear, exponential, or quadratic functions with addition and subtraction or two linear functions with multiplication.	A1 M6 Lesson 4: The Deal Supplemental material is necessary to fully address this standard.
NC.M1.F-BF.2 Translate between explicit and recursive forms of arithmetic and geometric sequences and use both to model situations.	A1 M5 Lesson 5: Arithmetic and Geometric Sequences A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences A1 M5 Lesson 7: Sierpinski Triangle

A1 | North Carolina Standard Course of Study Correlation to Eureka Math²

Linear, Quadratic, and Exponential Models

Construct and compare linear and exponential models and solve problems.

North Carolina Standard Course of Study

Aligned Components of Eureka Math²

NC.M1.F-LE.1	A1 M5 Lesson 15: Calculating Interest
Identify situations that can be modeled	A1 M5 Lesson 18: Modeling Populations
with linear and exponential functions, and justify the most appropriate	A1 M5 Lesson 21: World Population Prediction
model for a situation based on the rate	A1 M5 Lesson 22: A Closer Look at Populations
of change over equal intervals.	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
NC.M1.F-LE.3	A1 M5 Lesson 20: Comparing Growth of Functions
Compare the end behavior of linear, exponential, and quadratic functions using graphs and tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing	

Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

North Carolina Standard Course of Study	Aligned Components of <i>Eureka Math</i> ²
NC.M1.F-LE.5	8 M6 Lesson 6: Linear Functions and Rate of Change
Interpret the parameters a and b in a linear function $f(x) = ax + b$ or an exponential function $g(x) = ab^x$ in terms of a context.	A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Expressing Geometric Properties with Equations

Use coordinates to prove simple geometric theorems algebraically.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.G-GPE.4	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
Use coordinates to solve geometric problems involving polygons algebraically. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles. Use coordinates to verify algebraically that a given set of points produces a particular type of triangle or quadrilateral.	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
NC.M1.G-GPE.5	Math 1 M2 Lesson 6: Proving the Parallel Criterion
Use coordinates to prove the slope criteria for parallel and perpendicular lines and use them to solve problems. Determine if two lines are parallel, perpendicular, or neither. Find the equation of a line parallel or perpendicular to a given line that passes through a given point.	Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
NC.M1.G-GPE.6 Use coordinates to find the midpoint or endpoint of a line segment.	Supplemental material is necessary to address this standard.

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.S-ID.1	A1 M1 Lesson 19: Describing the Center of a Distribution
Use technology to represent data with plots on the real number line (histograms, and box plots).	A1 M1 Lesson 20: Using Center to Compare Data Distributions
	A1 M1 Lesson 22: Estimating Variability in Data Distributions
	Supplemental material is necessary to address using technology to create histograms and box plots.
NC.M1.S-ID.2	A1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. Interpret differences in shape, center, and spread in the context of the data sets.	
NC.M1.S-ID.3 Examine the effects of extreme data points (outliers) on shape, center, and/or spread.	A1 M1 Lesson 19: Describing the Center of a Distribution A1 M1 Lesson 21: Describing Variability in a Univariate Distribution with Standard Deviation A1 M1 Lesson 22: Estimating Variability in Data Distributions A1 M1 Lesson 23: Comparing Distributions of Univariate Data

Interpreting Categorical and Quantitative Data

North Carolina Standard

Summarize, represent, and interpret data on two categorical and quantitative variables.

Course of Study	Aligned Components of Eureka Math ²
NC.M1.S-ID.6	A1 M2 Lesson 15: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Lesson 1: Analyzing Paint Splatters
	A1 M6 Lesson 3: Populations of US Cities
NC.M1.S-ID.6a	A1 M2 Lesson 17: Modeling Relationships with a Line
Fit a least squares regression line to linear data using technology. Use the fitted function to solve problems.	A1 M2 Lesson 18: Calculating and Analyzing Residuals
	A1 M2 Lesson 20: Interpreting Correlation
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
NC.M1.S-ID.6b	A1 M2 Lesson 18: Calculating and Analyzing Residuals
Assess the fit of a linear function by analyzing residuals.	A1 M2 Lesson 19: Analyzing Residuals
	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
NC.M1.S-ID.6c	A1 M5 Topic D: Comparing Linear and Exponential Models
Fit a function to exponential data using technology. Use the fitted function to solve problems.	A1 M6 Topic A: Modeling Bivariate Quantitative Data

Interpreting Categorical and Quantitative Data Interpret linear models.

North Carolina Standard Course of Study	Aligned Components of Eureka Math ²
NC.M1.S-ID.7 Interpret in context the rate of change and the intercept of a linear model. Use the linear model to interpolate and extrapolate predicted values. Assess the validity of a predicted value.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data Supplemental material is necessary to address extrapolating predicted values.
NC.M1.S-ID.8 Analyze patterns and describe relationships between two variables in context. Using technology, determine the correlation coefficient of bivariate data and interpret it as a measure of the strength and direction of a linear relationship. Use a scatter plot, correlation coefficient, and a residual plot to determine the appropriateness of using a linear function to model a relationship between two variables.	A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data A1 M6 Topic A: Modeling Bivariate Quantitative Data
NC.M1.S-ID.9 Distinguish between association and causation.	A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data