Mathematics I | Ohio Learning Standards for Mathematics Correlation to Eureka Math ${ }^{\text {®® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Quantities

Reason quantitatively and use units to solve problems.

Ohio Learning Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

N.Q.1	Math 1 M1 Lesson 1: A Powerful Trio
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Math 1 M3 Lesson 14: Comparing Models for Situations
N.Q.2	Math 1 M6 Lesson 9: Solar System Models 1 M6 Lesson 10: Designing a Fundraiser
Define appropriate quantities for the purpose of descriptive modeling.	Math 1 M1 Lesson 1: A Powerful Trio 1 M3 Lesson 14: Comparing Models for Situations Math 1 M6 Lesson 3: Analyzing Paint Splatters
N.Q. $\mathbf{3}$	Math 1 M6 Lesson 9: Solar System Models
Choose a level of accuracy appropriate 1 M6 Lesson 10: Designing a Fundraiser	
to limitations on measurement when	
reporting quantities.	

Seeing Structure in Expressions

Interpret the structure of expressions.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

| A.SSE. 1 |
| :--- | :--- |
| Interpret expressions that represent |
| a quantity in terms of its context. |\quad This standard is fully addressed by the lessons aligned to its subsections.

Seeing Structure in Expressions

Write expressions in equivalent forms to solve problems.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math²

A.SSE. 3

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

A.SSE.3c

Use the properties of exponents to transform expressions for exponential functions.

Creating Equations

Create equations that describe numbers or relationships.

Ohio Learning Standards
for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

A.CED. 1

Create equations and inequalities in one variable and use them to solve problems.

A.CED. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 16: Applying Absolute Value

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 8: Low-Flow Showerhead
Math 1 M2 Lesson 12: Applications of Systems of Equations
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Ohio Learning Standards
 for Mathematics

Aligned Components of Eureka Math²

A.CED.3	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	Math 1 M1 Lesson 12: Solution Sets of Compound Statements Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities Math 1 M1 Lesson 16: Applying Absolute Value Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M2 Lesson 15: Applications of Linear Inequalities Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities Math 1 M6 Lesson 10: Designing a Fundraiser
A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	Math 1 M 1 Lesson 10: Rearranging Formulas

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math²

A.REI. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

Ohio Learning Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

A.REI. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

```
Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities
```


Reasoning with Equations and Inequalities

Solve systems of equations.

Ohio Learning Standards
 for Mathematics

A.REI. 5

Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

Aligned Components of Eureka Math ${ }^{2}$
-

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math²

A.REI. 6

Solve systems of linear equations algebraically and graphically.

Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

A.REI.10	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables	
A.REI.11	Math 1 M3 Lesson 10: Using Graphs to Solve Equations
Explain why the x-coordinates of the points where the graphs of the equation $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x) ;$ find the solutions approximately, e.g., using technology to graph the functions, making tables of values, or finding successive approximations.	Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

A.REI. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

Understand the concept of a function, and use function notation.

Ohio Learning Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.IF. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

Math 1 M3 Topic A: Functions and Their Graphs

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.IF. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences
Math 1 M5 Topic A: Arithmetic and Geometric Sequences

F.IF. 3

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.IF. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
Math 1 M3 Lesson 11: Comparing Functions
Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
Math 1 M3 Lesson 15: Mars Curiosity Rover

Ohio Learning Standards for Mathematics

F.IF. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Math 1 M3 Lesson 4: The Graph of a Function
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time

Interpreting Functions

Analyze functions using different representations.

Ohio Learning Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.IF. 7

Graph functions expressed symbolically and indicate key features of the graph, by hand in simple cases and using technology for more complicated cases. Include applications and how key features relate to characteristics of a situation, making selection of a particular type of function model appropriate.

F.IF.7a

Graph linear functions and indicate intercepts.

F.IF.7e

Graph simple exponential functions, indicating intercepts and end behavior.

This standard is addressed by the lessons aligned to its subsections.

Math 1 M3 Lesson 5: The Graph of the Equation $y=f(x)$
Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations Math 1 M3 Lesson 7: Representations of Functions

Math 1 M5 Lesson 8: Graphing Exponential Functions

Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Ohio Learning Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.IF. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Building Functions

Build a function that models a relationship between two quantities.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math²

F.BF. 1

Write a function that describes a relationship between two quantities.

F.BF.1a

Determine an explicit expression, a recursive process, or steps for calculation from context.

Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 9: Solar System Models

Math 1 M1 Lesson 2: Looking for Patterns
Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 13: Calculating Interest
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

Ohio Learning Standards for Mathematics
 Aligned Components of Eureka Math²

F.BF. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences

Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
Math 1 M6 Lesson 8: The Deal

Building Functions

Build new functions from existing functions.
Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.BF.4	Supplemental material is necessary to address this standard.
Find inverse functions.	Supplemental material is necessary to address this standard.
F.BF.4a Informally determine the input of a function when the output is known.	

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models, and solve problems.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.LE. 1	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can be modeled with linear functions and with exponential functions.	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Lesson 20: World Population Prediction
	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
F.LE.1a	Math 1 M5 Lesson 18: Analyzing Exponential Growth
Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.	
F.LE.1b	Math 1 M5 Lesson 20: World Population Prediction
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations
F.LE.1c	Math 1 M5 Lesson 20: World Population Prediction
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math²

F.LE. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

```
Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Topic D: Comparing Linear and Exponential Models
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models
```


Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

Ohio Learning Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

F.LE. 5

Interpret the parameters in a linear or exponential function in terms of a context.

[^0]
Congruence

Experiment with transformations in the plane.

Ohio Learning Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

G.CO. 1

Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and arc length.

G.CO. 2

Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch.

G.CO. 3

Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself.

G.CO.3a

Identify figures that have line symmetry; draw and use lines of symmetry to analyze properties of shapes.

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Math 1 M4 Lesson 1: Geometric Transformations

Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Math 1 M4 Lesson 15: Designs with Rigid Motions

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.CO.3b

Identify figures that have rotational symmetry; determine the angle of rotation, and use rotational symmetry to analyze properties of shapes.

G.CO. 4

Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

G.CO. 5

Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using items such as graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Math 1 M4 Lesson 15: Designs with Rigid Motions

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 15: Designs with Rigid Motions
Math 1 M4 Lesson 16: Congruent Figures

Congruence

Understand congruence in terms of rigid motions.

Ohio Learning Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

G.CO. 6

Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

G.CO. 7

Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

G.CO. 8

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 16: Congruent Figures

Math 1 M4 Lesson 17: Congruent Triangles

Math 1 M4 Lesson 18: Side-Angle-Side
Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

Prove geometric theorems both formally and informally using a variety of methods.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.CO.9	Supplemental material is necessary to address this standard.		
Prove and apply theorems about lines			
and angles.		\quad Supplemental material is necessary to address this standard. \quad	G.CO.10
:---			
Prove and apply theorems about triangles.			
G.CO.11 Prove and apply theorems about parallelograms.			

Congruence

Make geometric constructions.

Ohio Learning Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.CO. 12

Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).

Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Math 1 M4 Lesson 7: Constructing Perpendicular Lines
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane
Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions
Math 1 M4 Lesson 26: Sierpinski Triangle

Ohio Learning Standards
 for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

G.CO. 13

Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Math 1 M4 Lesson 9: Rotations of the Plane

Math 1 M4 Lesson 24: Squares Inscribed in Circles
Math 1 M4 Lesson 25: Regular Hexagons and Equilateral Triangles Inscribed in Circles

Congruence

Classify and analyze geometric figures.

Ohio Learning Standards
for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

G.CO. 14

Classify two-dimensional figures in a hierarchy based on properties.

Circles

Understand and apply theorems about circles.

Ohio Learning Standards

 for MathematicsAligned Components of Eureka Math ${ }^{2}$

G.C. 2

Identify and describe relationships among angles, radii, chords, tangents, and arcs and use them to solve problems.

Supplemental material is necessary to address this standard.

Ohio Learning Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.C. 3

Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle.

G.C. 4

Construct a tangent line from a point outside a given circle to the circle.

Supplemental material is necessary to address this standard.

Supplemental material is necessary to address this standard.

Expressing Geometric Properties with Equations

Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

Ohio Learning Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.GPE. 5

Justify the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems, e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point.

G.GPE. 7

Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

Math 1 M2 Lesson 6: Proving the Parallel Criterion
Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

S.ID. 1

Represent data with plots on the real number line (dot plots, histograms, and box plots) in the context of real-world applications using the GAISE model.

Math 1 M1 Lesson 17: Distributions and Their Shapes
Math 1 M1 Lesson 18: Describing the Center of a Distribution
Math 1 M1 Lesson 19: Using Center to Compare Data Distributions
Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
Supplemental material is necessary to address using the GAISE model.

Math 1 M1 Topic D: Univariate Data
Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
Supplemental material is necessary to address using the GAISE model.

Math 1 M1 Topic D: Univariate Data

Supplemental material is necessary to address using the GAISE model.

In the context of real-world applications by using the GAISE model, interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

Ohio Learning Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

S.ID. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

S.ID. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

S.ID.6c

Fit a linear function for a scatter plot that suggests a linear association.

Math 1 M6 Topic B: Modeling with Categorical Data

Math 1 M2 Lesson 22: Relationships Between Quantitative Variables

Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Math 1 M2 Lesson 24: Modeling Relationships with a Line
Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Math 1 M2 Lesson 27: Interpreting Correlation
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

 Interpret linear models.
Ohio Learning Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

S.ID. 7	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S.ID. 8	Math 1 M2 Lesson 27: Interpreting Correlation
Compute (using technology) and interpret the correlation coefficient of a linear fit.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

[^0]: Math 1 M5 Lesson 16: Modeling Populations
 Math 1 M5 Lesson 18: Analyzing Exponential Growth
 Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
 Math 1 M5 Lesson 23: Modeling an Invasive Species Population

