

Grade 8 | Oregon Mathematics Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*® curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds® teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment—a principle tested and proven to be essential in students' mastery of math—from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Algebraic Reasoning: Expressions and Equations

8.AEE.A Expressions and equations work with radicals and integer exponents.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AEE.A.1	M1 L5: Products of Exponential Expressions with Whole-Number Exponents
Apply the properties of integer exponents using powers of $10\ {\rm to}\ {\rm generate}\ {\rm equivalent}$ numerical expressions.	M1 L6: More Properties of Exponents
	M1 L7: Making Sense of the Exponent of 0
	M1 L8: Making Sense of Integer Exponents
	M1 L9: Writing Equivalent Expressions
	M1 L10: Evaluating Numerical Expressions by Using Properties of Exponents
8.AEE.A.2	M1 L16: Perfect Squares and Perfect Cubes
Represent solutions to equations using	M1 L17: Solving Equations with Squares and Cubes
square root and cube root symbols.	M1 L20: Square Roots
	M1 L22: Familiar and Not So Familiar Numbers
	M1 L24: Revisiting Equations with Squares and Cubes
8.AEE.A.3	M1 L1: Large and Small Positive Numbers
Estimate very large or very small	M1 L2: Comparing Large Numbers
quantities using scientific notation	M1 L3: Time to Be More Precise-Scientific Notation
with a single digit times an integer power of ten.	M1 L7: Making Sense of the Exponent of 0
	M1 L11: Small Positive Numbers in Scientific Notation
8.AEE.A.4	M1 L2: Comparing Large Numbers
Perform operations with numbers expressed in scientific notation.	M1 L4: Adding and Subtracting Numbers Written in Scientific Notation
	M1 L12: Operations with Numbers in Scientific Notation
	M1 L13: Applications with Numbers in Scientific Notation
	M1 L14: Choosing Units of Measurement
	M1 L15: Get to the Point

Algebraic Reasoning: Expressions and Equations

8.AEE.B Understand the connections between proportional relationships, lines, and linear equations.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AEE.B.5 Graph proportional relationships in authentic contexts. Interpret the unit rate as the slope of the graph, and compare two different proportional relationships represented in different ways.	M4 L15: Comparing Proportional Relationships M4 L16: Proportional Relationships and Slope
8.AEE.B.6	M3 L17: Similar Triangles on a Line
Write the equation for a line in slope intercept form $y = mx + b$, where m and	M4 L16: Proportional Relationships and Slope M4 L17: Slopes of Rising Lines
b are rational numbers, and explain in context why the slope m is the same between any two distinct points.	M4 L18: Slopes of Falling Lines M4 L19: Using Coordinates to Find Slope

Algebraic Reasoning: Expressions and Equations

8.AEE.C Analyze and solve linear equations and pairs of simultaneous linear equations.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AEE.C.7

Solve linear equations with one variable including equations with rational number coefficients, with the variable on both sides, or whose solutions require using the distributive property and/or combining like terms.

M4 L1: Equations

M4 L2: Solving Linear Equations

M4 L3: Solving Linear Equations with Rational Coefficients

M4 L4: Using Linear Equations to Solve Problems

M4 L5: An Interesting Application of Linear Equations, Part 1

M4 L6: An Interesting Application of Linear Equations, Part 2

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AEE.C.7 continued	M4 L7: Linear Equations with More Than One Solution
	M4 L8: Another Possible Number of Solutions
	M4 L9: Writing Linear Equations
	M4 L10: Using Linear Equations to Solve Real-World Problems
	M4 L11: Planning a Trip
8.AEE.C.8	M5 L1: Solving Problems with Equations and Their Graphs
Find, analyze, and interpret solutions	M5 L2: Introduction to Systems of Linear Equations
to pairs of simultaneous linear equations	M5 L3: Identifying Solutions
using graphs or tables.	M5 L4: More Than One Solution
	M5 L5: Estimating Solutions
	M5 L6: Solving Systems of Linear Equations Without Graphing
	M5 L7: The Substitution Method
	M5 L8: Using Tape Diagrams to Solve Systems of Equations
	M5 L9: Rewriting Equations to Solve a System of Equations
	M5 L10: Choosing a Solution Method
	M5 L11: Writing and Solving Systems of Equations for Mathematical Problems
	M5 L12: Solving Historical Problems with Systems of Equations
	M5 L13: Writing and Solving Systems of Equations for Real-World Problems
	M5 L14: Back to the Coordinate Plane

Algebraic Reasoning: Functions

8.AFN.A Define, evaluate, and compare functions.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AFN.A.1 Understand in authentic contexts, that the graph of a function is the set of ordered pairs consisting of an input and a corresponding output.	M6 L1: Motion and Speed M6 L2: Definition of a Function M6 L4: More Examples of Functions M6 L5: Graphs of Functions and Equations
8.AFN.A.2 Compare the properties of two functions represented algebraically, graphically, numerically in tables, or verbally by description.	M6 L7: Interpreting Rate of Change and Initial Value M6 L8: Comparing Functions
8.AFN.A.3 Understand and identify linear functions, whose graph is a straight line, and identify examples of functions that are not linear.	M6 L3: Linear Functions and Proportionality M6 L6: Linear Functions and Rate of Change M6 L10: Graphs of Nonlinear Functions

Algebraic Reasoning: Functions

8.AFN.B Use functions to model relationships between quantities.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AFN.B.4	M6 L6: Linear Functions and Rate of Change
Construct a function to model a linear relationship in authentic contexts between two quantities.	M6 L7: Interpreting Rate of Change and Initial Value M6 L25: Applications of Volume

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.AFN.B.5	M6 L9: Increasing and Decreasing Functions
Describe qualitatively the functional relationship between two quantities in authentic contexts by analyzing a graph.	M6 L10: Graphs of Nonlinear Functions

Numeric Reasoning: Number Systems

8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers.

Aligned Components of Eureka Math²

8.NS.A.1 Know that real numbers that are not rational are called irrational.	M1 L22: Familiar and Not So Familiar Numbers M4 L5: An Interesting Application of Linear Equations, Part 1 M4 L6: An Interesting Application of Linear Equations, Part 2
8.NS.A.2 Use rational approximations of irrational numbers to compare size and locate on a number line.	M1 L21: Approximating Values of Roots and π^2 M1 L23: Ordering Irrational Numbers

Geometric Reasoning and Measurement

8.GM.A Understand congruence and similarity using physical models, transparencies, or geometry software.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

	<u> </u>
8.GM.A.1	M2 L1: Motions of the Plane
Verify experimentally the properties of rotations, reflections, and translations.	M2 L2: Translations
	M2 L3: Reflections
	M2 L5: Rotations
	M2 L7: Working Backward
	M2 L8: Sequencing the Rigid Motions
8.GM.A.2	M2 L7: Working Backward
Understand that a two-dimensional	M2 L8: Sequencing the Rigid Motions
figure is congruent to another if the second can be obtained from the first	M2 L9: Ordering Sequences of Rigid Motions
by a sequence of rotations, reflections,	M2 L10: Congruent Figures
and translations.	M2 L11: Showing Figures are Congruent
	M2 L12: Lines Cut by a Transversal
8.GM.A.3	M2 L4: Translations and Reflections on the Coordinate Plane
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	M2 L6: Rotations on the Coordinate Plane
	M2 L9: Ordering Sequences of Rigid Motions
	M3 L1: Exploring Dilations
	M3 L2: Enlargements
	M3 L3: Reductions and More Enlargements
	M3 L4: Using Lined Paper to Explore Dilations
	M3 L5: Figures and Dilations
	M3 L6: The Shadowy Hand

Oregon Mathematics Standards

Aligned Components of Eureka Math²

M3 L7: Dilations on a Grid
M3 L8: Dilations on the Coordinate Plane
M3 L9: Describing Dilations
M3 L10: Sequencing Transformations
M3 L16: Similar Right Triangles
M3 L11: Similar Figures
M3 L12: Exploring Angles in Similar Triangles
M3 L13: Similar Triangles
M3 L17: Similar Triangles on a Line
M2 L12: Lines Cut by a Transversal
M2 L13: Angle Sum of a Triangle
M2 L14: Showing Lines Are Parallel
M2 L15: Exterior Angles of Triangles
M2 L16: Find Unknown Angle Measures
M3 L12: Exploring Angles in Similar Triangles
M3 L13: Similar Triangles
M3 L14: Using Similar Figures to Find Unknown Side Lengths
M3 L15: Applications of Similar Figures
M3 L16: Similar Right Triangles

Geometric Reasoning and Measurement

8.GM.B Understand and apply the Pythagorean Theorem.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.GM.B.6 Distinguish between applications of the Pythagorean Theorem and its converse in authentic contexts.	M2 L17: Proving the Pythagorean Theorem M2 L18: Proving the Converse of the Pythagorean Theorem M2 L19: Using the Pythagorean Theorem and Its Converse
8.GM.B.7	M1 L18: The Pythagorean Theorem
Apply the Pythagorean Theorem	M1 L19: Using the Pythagorean Theorem
in authentic contexts to determine unknown side lengths in right triangles.	M1 L20: Square Roots
	M2 L19: Using the Pythagorean Theorem and Its Converse
	M2 L21: Applying the Pythagorean Theorem
	M2 L22: On the Right Path
	M3 L16: Similar Right Triangles
8.GM.B.8	M2 L20: Distance in the Coordinate Plane
Apply the Pythagorean Theorem to find	M2 L22: On the Right Path
the distance between two points in a coordinate system.	

Geometric Reasoning and Measurement

8.GM.C Solve mathematical problems in authentic contexts involving volume of cylinders, cones, and spheres.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.GM.C.9

Choose and use the appropriate formula for the volume of cones, cylinders, and spheres to solve problems in authentic contexts.

M6 L21: Volumes of Prisms and Pyramids

M6 L22: Volume of Cylinders

M6 L23: Volume of Cones

M6 L24: Volume of Spheres

M6 L25: Applications of Volume

Data Reasoning

8.DR.A Formulate statistical investigative questions.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.DR.A.1

Formulate statistical investigative questions to articulate research topics and uncover patterns of association seen in bivariate categorical data.

M6 L18: Bivariate Categorical Data

M6 L19: Association in Bivariate Categorical Data

M6 L20: Analyzing Bivariate Categorical Data

Data Reasoning

8.DR.B Collect and consider data.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.DR.B.2

Collect or consider data using surveys and measurements to capture patterns of association, and critically analyze data collection methods. M6 L13: Informally Fitting a Line to Data

M6 L15: Linear Models

M6 L16: Using the Investigative Process

M6 L17: Analyzing the Model

Data Reasoning

8.DR.C Analyze, summarize, and describe data.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.DR.C.3

Analyze patterns of association between two quantitative or categorical variables and reason about distributions to compare groups. M6 L11: Scatter Plots

M6 L12: Patterns in Scatter Plots

M6 L18: Bivariate Categorical Data

M6 L19: Association in Bivariate Categorical Data

M6 L20: Analyzing Bivariate Categorical Data

Data Reasoning

8.DR.D Interpret data and answer investigative questions.

Oregon Mathematics Standards

Aligned Components of Eureka Math²

8.DR.D.4

Interpret scatter plots for bivariate quantitative data to investigate patterns of association between two quantities to answer investigative questions.

M6 L6: Linear Functions and Rate of Change

M6 L7: Interpreting Rate of Change and Initial Value

M6 L14: Determining an Equation of a Line Fit to Data

M6 L15: Linear Models

M6 L16: Using the Investigative Process

M6 L17: Analyzing the Model