Algebra || Pennsylvania Core Standards Mathematics Correlation to Eureka Math ${ }^{\text {®® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

A1 | Pennsylvania Core Standards Mathematics Correlation to Eureka Math ${ }^{2}$

Numbers and Operations

CC.2.1.HS.F Number and Quantity

Pennsylvania Core Standards
 Mathematics

Aligned Components of Eureka Math ${ }^{2}$

CC.2.1.HS.F. 1

Apply and extend the properties of exponents to solve problems with rational exponents.

CC.2.1.HS.F. 2

Apply properties of rational and irrational numbers to solve real-world or mathematical problems.

CC.2.1.HS.F. 3

Apply quantitative reasoning to choose and interpret units and scales in formulas, graphs, and data displays.

CC.2.1.HS.F. 4

Use units as a way to understand problems and to guide the solution of multi-step problems.

CC.2.1.HS.F. 5

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 17: Rewriting Square Roots

Supplemental material is necessary to address this standard.

A1 M6 Lesson 5: Solar System Models

Algebraic Concepts
 CC.2.2.HS.D Algebra

Pennsylvania Core Standards Mathematics

CC.2.2.HS.D. 1

Interpret the structure of expressions to represent a quantity in terms of its context.

Aligned Components of Eureka Math ${ }^{2}$

CC.2.2.HS.D. 2

Write expressions in equivalent forms to solve problems.

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M1 Lesson 1: The Growing Pattern of Ducks
A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
A1 M1 Lesson 3: Polynomial Expressions
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Topic B: Factoring
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

Pennsylvania Core Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

CC.2.2.HS.D. 5

Use polynomial identities to solve problems.

A1 M1 Lesson 6: Polynomial Identities

Supplemental material is necessary to address this standard.

CC.2.2.HS.D. 6

Extend the knowledge of rational functions to rewrite in equivalent forms.

CC.2.2.HS.D. 7

Create and graph equations or inequalities to describe numbers or relationships.

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable

A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Lesson 5: Solar System Models
A1 M6 Lesson 6: Designing a Fundraiser
A1 M1 Lesson 12: Rearranging Formulas
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Apply inverse operations to solve equations or formulas for a given variable.

Pennsylvania Core Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

CC.2.2.HS.D. 9

Use reasoning to solve equations and justify the solution method.

CC.2.2.HS.D. 10

Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.

A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Algebraic Concepts

CC.2.2.HS.C Functions

Pennsylvania Core Standards Mathematics

CC.2.2.HS.C. 1

Use the concept and notation of functions to interpret and apply them in terms of their context.

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Topic A: Functions and Their Graphs
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

Pennsylvania Core Standards Mathematics

Aligned Components of Eureka Math²

CC.2.2.HS.C. 2

Graph and analyze functions and use their properties to make connections between the different representations.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M5 Topic A: Arithmetic and Geometric Sequences
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 15: Calculating Interest
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut

Pennsylvania Core Standards Mathematics

Aligned Components of Eureka Math²

CC.2.2.HS.C. 4

Interpret the effects transformations have on functions and find the inverses of functions.

A1 M3 Topic D: Transformations of Functions
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Supplemental material is necessary to address inverse functions.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$

A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 11: Comparing Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Topic C: Exponential Growth and Decay

Pennsylvania Core Standards Mathematics

Aligned Components of Eureka Math²

CC.2.2.HS.C. 5 continued

A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Topic A: Modeling Bivariate Quantitative Data
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Topic A: Modeling Bivariate Quantitative Data
A1 M6 Lesson 4: The Deal
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
Interpret functions in terms of the
situations they model.
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population

Measurement, Data, and Probability

CC.2.4.HS.B Statistics and Probability

Pennsylvania Core Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

CC.2.4.HS.B. $1 \quad$ A1 M1 Topic D: Univariate Data

Summarize, represent, and interpret data on a single count or measurement variable.

CC.2.4.HS.B. 2

Summarize, represent, and interpret data on two categorical and quantitative variables.

CC.2.4.HS.B. 3

Analyze linear models to make interpretations based on the data.

CC.2.4.HS.B. 4

Recognize and evaluate random processes underlying statistical experiments.

CC.2.4.HS.B. 5

Make inferences and justify conclusions based on sample surveys, experiments, and observational studies.

CC.2.4.HS.B. 7

Apply the rules of probability to compute probabilities of compound events in a uniform probability model.

