EUREKA MATH².

Algebra I | Rhode Island Core Standards for Mathematics Correlation to Eureka Math^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

The Real Number System

A. Extend the properties of exponents to rational exponents.

Rhode Island Core Standards for Mathematics Aligned Components of Eureka Math²

N-RN.A.1	A1 M5 Lesson 9: Unit Fraction Exponents
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	A1 M5 Lesson 10: Rational Exponents
N-RN.A.2	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents.	A1 M5 Lesson 10: Rational Exponents

The Real Number System

B. Use properties of rational and irrational numbers.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
N-RN.B.3	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	A1 M4 Lesson 17: Rewriting Square Roots

Quantities

A. Reason quantitatively and use units to solve problems.

Rhode Island Core Standards Aligned Components of Eureka Math² for Mathematics Aligned Components of Eureka Math²

N-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	A1 M6 Lesson 5: Solar System Models
N-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.	A1 M4 Lesson 25: Maximizing Area A1 M6 Lesson 5: Solar System Models
N-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions

A. Interpret the structure of linear, quadratic, exponential, polynomial, and rational expressions.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A-SSE.A.1	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A-SSE.A.1.a	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
Interpret parts of an expression, such as terms, factors, and coefficients.	
A-SSE.A.1.b	A1 M5 Lesson 8: Exponential Functions
Interpret complicated expressions	A1 M5 Lesson 16: Exponential Growth
by viewing one or more of their parts as a single entity.	A1 M5 Lesson 17: Exponential Decay
us a single entity.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A-SSE.A.2	A1 M1 Lesson 1: The Growing Pattern of Ducks
Use the structure of an expression	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
to identify ways to rewrite it.	A1 M1 Lesson 3: Polynomial Expressions
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Topic B: Factoring
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 18: Modeling Populations

Seeing Structure in Expressions

B. Write expressions in equivalent forms to solve problems.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A-SSE.B.3	This standard is fully addressed by the lessons aligned to its subsections.
Change and preduce an equivalent form	

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	
A-SSE.B.3.a Factor a quadratic expression to reveal the zeros of the function it defines.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A-SSE.B.3.b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A-SSE.B.3.c Use the properties of exponents to transform expressions for exponential functions.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Arithmetic with Polynomials and Rational Expressions

A. Perform arithmetic operations on polynomials.

Rhode Island Core Standards for Mathematics

Aligned Components of Eureka Math²

Understand that polynomials form a system analogous to the integers, namely, they are closed under certainA1 M1 Lesson 4: Adding and Subtracting Polynomial ExpressionsA1 M1 Lesson 5: Multiplying Polynomial ExpressionsA1 M1 Lesson 6: Delynomial Expressions	A-APR.A.1	A1 M1 Lesson 3: Polynomial Expressions
operations. AI MI Lesson 6: Polynomial Identities	a system analogous to the integers, namely, they are closed under certain	

Creating Equations

A. Create equations that describe numbers or relationships.

Rhode Island Core Standards for Mathematics

A-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (Include equations arising from linear and quadratic functions, and simple root and rational functions and exponential functions.)	A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables A1 M2 Lesson 3: Creating Linear Equations in Two Variables A1 M2 Lesson 6: Applications of Linear Equations and Inequalities A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
A-CED.A.2 continued	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter
A-CED.A.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 14: Solution Sets of Compound Statements A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 6: Applications of Linear Equations and Inequalities A1 M6 Lesson 5: Solar System Models
A-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	A1 M1 Lesson 12: Rearranging Formulas A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

A. Understand solving equations as a process of reasoning and explain the reasoning.

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
A-REI.A.1	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify or refute a solution method.	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

B. Solve equations and inequalities in one variable.

Rhode Island Core Standards for Mathematics

A-REI.B.3	A1 M1 Lesson 7: Printing Presses
Solve linear equations and inequalities	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
in one variable, including equations with coefficients represented by letters.	A1 M1 Lesson 9: Solving Linear Equations in One Variable
	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M1 Lesson 16: Solving Absolute Value Equations
	A1 M1 Lesson 17: Solving Absolute Value Inequalities

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A-REI.B.4.a	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.	A1 M4 Lesson 15: Deriving the Quadratic Formula
A-REI.B.4.b	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
Solve quadratic equations by inspection	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
(e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M4 Lesson 16: Solving Quadratic Equations
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

C. Solve systems of equations.

Rhode Island Core Standards for Mathematics Aligned Components of Eureka Math²

A-REI.C.5	A1 M2 Lesson 9: A New Way to Solve Systems
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	
A-REI.C.6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
and approximately (e.g., with graphs), focusing on pairs of linear equations	A1 M2 Lesson 9: A New Way to Solve Systems
in two variables.	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations
A-REI.C.7	A1 M4 Lesson 24: Another Look at Systems of Equations
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	

Reasoning with Equations and Inequalities

D. Represent and solve equations and inequalities graphically.

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
A-REI.D.10	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A-REI.D.11	A1 M3 Lesson 10: Using Graphs to Solve Equations
Explain why the <i>x</i> -coordinates of the	A1 M3 Lesson 15: The Absolute Value Function
points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the	A1 M4 Lesson 24: Another Look at Systems of Equations
y = f(x) and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 20: Comparing Growth of Functions
technology to graph the functions, make tables of values, or find successive	
approximations. Include cases where	
f(x) and/or $g(x)$ are linear, polynomial,	
rational, absolute value, exponential, and logarithmic functions.	

© 2023 Great Minds PBC | greatminds.org

Rhode Island Core Standards for Mathematics

Aligned Components of Eureka Math²

Graph the solutions of a linear inequality in two variables as a half-plane (excluding the boundary in the case of aA1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 12: Solution Sets of Systems of Linear InequalitiesA1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities	A-REI.D.12	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
(excluding the boundary in the case of a		
strict inequality, and graph the solution	strict inequality), and graph the solution	A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
set of a system of linear inequalitiesA1 M2 Lesson 14: Applications of Systems of Linear Inequalitiesin two variables as the intersection of the corresponding half-planes.A1 M6 Lesson 5: Solar System Models	in two variables as the intersection of the	

Interpreting Functions

A. Understand the concept of a function and use function notation.

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
F-IF.A.1	A1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	

for Mathematics	Alighed Components of Eureka Math-
F-IF.A.2	A1 M3 Lesson 1: The Definition of a Function
Use function notation, evaluate functions	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
for inputs in their domains, and interpret statements that use function notation in terms of a context.	A1 M3 Lesson 6: Representations of Functions
	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 7: Sierpinski Triangle
F-IF.A.3	A1 M5 Lesson 1: Exploring Patterns
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Rhode Island Core Standards for Mathematics

Interpreting Functions

B. Interpret functions that arise in applications in terms of the context (linear, quadratic, exponential, rational, polynomial, square root, cube root, trigonometric, logarithmic).

Rhode Island Core Standards for Mathematics

F-IF.B.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
For a function that models a relationship	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative	A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
	A1 M3 Lesson 11: Comparing Functions
	A1 M3 Lesson 12: Mars Curiosity Rover
	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
	A1 M4 Lesson 1: Falling Objects
	A1 M4 Lesson 2: Projectile Motion
maximums and minimums; symmetries; end behavior; and periodicity.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
ena benavior; ana perioaicity.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
F-IF.B.5	A1 M3 Lesson 3: The Graph of a Function
Relate the domain of a function to its	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
graph and, where applicable, to the	A1 M3 Lesson 16: Step Functions
quantitative relationship it describes.	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	1

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
F-IF.B.6	A1 M4 Lesson 1: Falling Objects
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 20: Comparing Growth of Functions A1 M5 Lesson 24: Modeling an Invasive Species Population

Dhada Jaland Care Standarda

Interpreting Functions

C. Analyze functions using different representations.

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
F-IF.C.7.a	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph linear and quadratic functions and show intercepts, maxima, and minima.	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
	A1 M3 Lesson 6: Representations of Functions
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

Aligned Components of <i>Eureka Math</i> ²
A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 19: Building New Functions—Translations A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
This standard is fully addressed by the lessons aligned to its subsections.
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
F-IF.C.8.b	A1 M5 Lesson 11: Graphing Exponential Functions
Use the properties of exponents to interpret expressions for exponential functions. Apply to financial situations such as identifying appreciation and depreciation rate for the value of a house or car some time after its initial purchase. $Vn = P(1 + r)^n$	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations
F-IF.C.9	A1 M3 Lesson 11: Comparing Functions
Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way.	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Building Functions

A. Build a function that models a relationship between two quantities.

Rhode Island Core Standards Aligned Components of Eureka Math² for Mathematics A1 M3 Lesson 17: Piecewise Linear Functions in Context. F-BF.A.1.a Determine an explicit expression, A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts a recursive process, or steps for A1 M4 Lesson 25: Maximizing Area calculation from a context. A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M5 Topic A: Arithmetic and Geometric Sequences A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 15: Calculating Interest A1 M6 Topic B: Developing Models for Contexts F-BF.A.1.b A1 M6 Lesson 4: The Deal Combine standard function types using A1 M6 Lesson 6: Designing a Fundraiser arithmetic operations. A1 M6 Lesson 7: World Record Doughnut F-BF.A.2 A1 M5 Lesson 5: Arithmetic and Geometric Sequences Write arithmetic and geometric A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences sequences both recursively and with A1 M5 Lesson 7: Sierpinski Triangle an explicit formula, use them to model situations, and translate between the

two forms.

Building Functions

B. Build new functions from existing functions.

Rhode Island Core Standards for Mathematics

F-BF.B.3

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. (Include linear, quadratic, exponential, absolute value, simple rational and radical, logarithmic and trigonometric functions.) Utilize technology to experiment with cases and illustrate an explanation of the effects on the graph. (Include recognizing even and odd functions from their graphs and algebraic expressions for them.)

Aligned Components of Eureka Math²

A1 M3 Topic D: Transformations of Functions A1 M4 Lesson 20: Art with Transformations A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear, Quadratic, and Exponential Models

A. Construct and compare linear, quadratic, and exponential models and solve problems.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
F-LE.A.1	A1 M5 Lesson 15: Calculating Interest
Distinguish between situations that can	A1 M5 Lesson 18: Modeling Populations
be modeled with linear functions and with exponential functions.	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Topic A: Modeling Bivariate Quantitative Data

Rhode Island Core Standards for Mathematics

F-LE.A.1.a	A1 M5 Lesson 19: Analyzing Exponential Growth
Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	
F-LE.A.1.b	A1 M5 Lesson 15: Calculating Interest
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
F-LE.A.1.c	A1 M5 Lesson 15: Calculating Interest
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
F-LE.A.2	A1 M5 Lesson 8: Exponential Functions
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Topic D: Comparing Linear and Exponential Models
	A1 M6 Topic B: Developing Models for Contexts

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
F-LE.A.3	A1 M5 Lesson 20: Comparing Growth of Functions
Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	

Linear, Quadratic, and Exponential Models

B. Interpret expressions for functions in terms of the situation they model.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
F-LE.B.5	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters in a linear or exponential function (of the form $f(x) = b^x + k$) in terms of a context.	A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Categorical and Quantitative Data

A. Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
S-ID.A.1 Represent data with plots on the real number line (dot plots, histograms, and box plots).	A1 M1 Lesson 18: Distributions and Their Shapes A1 M1 Lesson 19: Describing the Center of a Distribution A1 M1 Lesson 20: Using Center to Compare Data Distributions

Aligned Components of Eureka Math² S-ID.A.2 A1 M1 Topic D: Univariate Data Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. A1 M1 Topic D: Univariate Data S-ID.A.3 A1 M1 Topic D: Univariate Data Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). A1 M1 Topic D: Univariate Data

Interpreting Categorical and Quantitative Data

B. Summarize, represent, and interpret data on two categorical and quantitative variables.

Rhode Island Core Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
S-ID.B.5	A1 M2 Topic D: Categorical Data on Two Variables
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	

Rhode Island Core Standards for Mathematics

S-ID.B.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 15: Relationships Between Quantitative Variables A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S-ID.B.6.a Fit a linear function to the data and use the fitted function to solve problems in the context of the data. Use functions fitted to data or choose a function suggested by the context. Emphasize linear and exponential models.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M6 Topic A: Modeling Bivariate Quantitative Data
S-ID.B.6.b Informally assess the fit of a function by plotting and analyzing residuals.	A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 19: Analyzing Residuals A1 M6 Topic A: Modeling Bivariate Quantitative Data
S-ID.B.6.c Fit a linear function for a scatter plot that suggests a linear association.	A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 20: Interpreting Correlation A1 M6 Topic A: Modeling Bivariate Quantitative Data

Interpreting Categorical and Quantitative Data

C. Interpret linear models.

Rhode Island Core Standards for Mathematics	Aligned Components of Eureka Math ²
S-ID.C.7	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S-ID.C.8	A1 M2 Lesson 20: Interpreting Correlation
Compute (using technology) and interpret the correlation coefficient of a linear fit.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S-ID.C.9	A1 M2 Lesson 20: Interpreting Correlation
Distinguish between correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data