EUREKA MATH².

Algebra I | South Carolina College and Career Ready Standards for Mathematics Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Process Standards	Aligned Components of Eureka Math ²
1.	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
2.	Lessons in every module engage students in mathematical practices.
Reason both contextually and abstractly.	These are indicated in margin notes included with every lesson.
3.	Lessons in every module engage students in mathematical practices.
Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
4. Connect mathematical ideas and real-world situations through modeling.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
5.	Lessons in every module engage students in mathematical practices.
Use a variety of mathematical tools effectively and strategically.	These are indicated in margin notes included with every lesson.
6.	Lessons in every module engage students in mathematical practices.
Communicate mathematically and approach mathematical situations with precision.	These are indicated in margin notes included with every lesson.
7.	Lessons in every module engage students in mathematical practices.
Identify and utilize structure and patterns.	These are indicated in margin notes included with every lesson.

A1 | South Carolina College and Career Ready Standards for Mathematics Correlation to Eureka Math²

Algebra

Arithmetic with Polynomials and Rational Expressions

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

A1.AAPR.1	A1 M1 Lesson 3: Polynomial Expressions
Add, subtract, and multiply polynomials and understand that polynomials are closed under these operations.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities

Algebra

Creating Equations

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

A1.ACE.1	A1 M1 Lesson 7: Printing Presses
Create and solve equations and inequalities in one variable that model real-world problems involving linear, quadratic, simple rational, and exponential relationships. Interpret the solutions and determine whether they are reasonable.	A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.ACE.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create equations in two or more variables	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
to represent relationships between	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
quantities. Graph the equations on coordinate axes using appropriate	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
labels, units, and scales.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
A1.ACE.4	A1 M1 Lesson 12: Rearranging Formulas
Solve literal equations and formulas for a specified variable including equations and formulas that arise in a variety of disciplines.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

South Carolina College and Career

Algebra

Reasoning with Equations and Inequalities

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
A1.AREI.1	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Understand and justify that the steps taken when solving simple equations in one variable create new equations that have the same solution as the original.	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
A1.AREI.3	A1 M1 Lesson 7: Printing Presses
Solve linear equations and inequalities in one variable, including equations with	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
	A1 M1 Lesson 9: Solving Linear Equations in One Variable
coefficients represented by letters.	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M1 Lesson 16: Solving Absolute Value Equations
	A1 M1 Lesson 17: Solving Absolute Value Inequalities
A1.AREI.4	This standard is fully addressed by the lessons aligned to its subsections.
Solve mathematical and real-world problems involving quadratic equations in one variable.	
A1.AREI.4.a	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - h)^2 = k$ that has the same solutions. Derive the quadratic formula from this form.	A1 M4 Lesson 15: Deriving the Quadratic Formula

$\ensuremath{\textcircled{\sc 0}}$ 2023 Great Minds PBC | greatminds.org

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
A1.AREI.4.b	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a + bi$ for real numbers a and b .	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 16: Solving Quadratic Equations A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
A1.AREI.5 Justify that the solution to a system of linear equations is not changed when one of the equations is replaced by a linear combination of the other equation.	A1 M2 Lesson 9: A New Way to Solve Systems
A1.AREI.6 Solve systems of linear equations algebraically and graphically focusing on pairs of linear equations in two variables.	This standard is fully addressed by the lessons aligned to its subsections.

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.AREI.6.a	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations using	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
the substitution method.	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations
A1.AREI.6.b	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations using	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
linear combination.	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations
A1.AREI.10	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Explain that the graph of an equation in	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
two variables is the set of all its solutions plotted in the coordinate plane.	
A1.AREI.11	A1 M3 Lesson 10: Using Graphs to Solve Equations
Solve an equation of the form f(x) = g(x) graphically by identifying the x-coordinate(s) of the point(s) of intersection of the graphs of $y = f(x)$ and $y = g(x)$.	A1 M3 Lesson 15: The Absolute Value Function
	A1 M4 Lesson 24: Another Look at Systems of Equations
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 20: Comparing Growth of Functions

@ 2023 Great Minds PBC | greatminds.org

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.AREI.12	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
Graph the solutions to a linear inequality in two variables.	A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
	A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
	A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
	A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
	A1 M6 Lesson 5: Solar System Models

Algebra Structure and Expressions

South Carolina College and Career Aligned Components of Eureka Math² **Ready Standards for Mathematics** A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1.ASE.1 Interpret the meanings of coefficients, A1 M5 Lesson 8: Exponential Functions factors, terms, and expressions based A1 M5 Lesson 16: Exponential Growth on their real-world contexts. Interpret A1 M5 Lesson 17: Exponential Decay complicated expressions as being composed of simpler expressions. A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time A1.ASE.2 A1 M1 Lesson 1: The Growing Pattern of Ducks Analyze the structure of binomials, A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties trinomials, and other polynomials in A1 M1 Lesson 3: Polynomial Expressions order to rewrite equivalent expressions. A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Topic B: Factoring A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
A1.ASE.2 continued	A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations
A1.ASE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	This standard is fully addressed by the lessons aligned to its subsection.
A1.ASE.3.a Find the zeros of a quadratic function by rewriting it in equivalent factored form and explain the connection between the zeros of the function, its linear factors, the <i>x</i> -intercepts of its graph, and the solutions to the corresponding quadratic equation.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

Functions

Building Functions

South Carolina College and Career **Ready Standards for Mathematics**

Aligned Components of Eureka Math²

A1.FBF.3	A1 M3 Topic D: Transformations of Functions
Describe the effect of the transformations $kf(x), f(x) + k, f(x + k)$, and combinations of such transformations on the graph of	A1 M4 Lesson 20: Art with Transformations A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
y = f(x) for any real number k . Find the value of k given the graphs and write the equation of a transformed parent function given its graph.	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Functions

Interpreting Functions

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.FIF.1	This standard is fully addressed by the lessons aligned to its subsections.
Extend previous knowledge of a function to apply to general behavior and features of a function.	
A1.FIF.1.a	A1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range.	

South Carolina College and Career A 11 . -

South Carolina College and Career Aligned Components of Eureka Math² **Ready Standards for Mathematics** A1.FIF.1.b A1 M3 Topic A: Functions and Their Graphs Represent a function using function notation and explain that f(x) denotes the output of function *f* that corresponds to the input *x*. A1.FIF.1.c A1 M3 Topic A: Functions and Their Graphs Understand that the graph of a function labeled as f is the set of all ordered pairs (x, y) that satisfy the equation y = f(x). A1.FIF.2 A1 M3 Lesson 1: The Definition of a Function Evaluate functions and interpret the A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions meaning of expressions involving A1 M3 Lesson 6: Representations of Functions function notation from a mathematical A1 M3 Lesson 16: Step Functions perspective and in terms of the context when the function describes a real-world A1 M5 Lesson 1: Exploring Patterns situation. A1 M5 Lesson 2: The Recursive Challenge A1 M5 Lesson 3: Recursive Formulas for Sequences A1 M5 Lesson 4: Explicit Formulas for Sequences A1 M5 Lesson 7: Sierpinski Triangle

© 2023 Great Minds PBC | greatminds.org

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.FIF.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
Interpret key features of a function that models the relationship between two	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
	A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
quantities when given in graphical or tabular form. Sketch the graph of a	A1 M3 Lesson 11: Comparing Functions
function from a verbal description	A1 M3 Lesson 12: Mars Curiosity Rover
showing key features. Key features include intercepts; intervals where	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
the function is increasing, decreasing,	A1 M4 Lesson 1: Falling Objects
constant, positive, or negative; relative	A1 M4 Lesson 2: Projectile Motion
maximums and minimums; symmetries; end behavior and periodicity.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
A1.FIF.5	A1 M3 Lesson 3: The Graph of a Function
Relate the domain and range of a	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
function to its graph and, where applicable, to the quantitative relationship it describes.	A1 M3 Lesson 16: Step Functions
	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

South Carolina College and Career

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
A1.FIF.6	A1 M4 Lesson 1: Falling Objects
Given a function in graphical, symbolic,	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
or tabular form, determine the average rate of change of the function over a specified interval. Interpret the meaning	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M5 Lesson 19: Analyzing Exponential Growth
of the average rate of change in a	A1 M5 Lesson 20: Comparing Growth of Functions
given context.	A1 M5 Lesson 24: Modeling an Invasive Species Population
A1.FIF.7	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph functions from their symbolic	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
representations. Indicate key features including intercepts; intervals where the	A1 M3 Lesson 6: Representations of Functions
function is increasing, decreasing, positive,	A1 M3 Topic C: Piecewise-Defined Linear Functions
or negative; relative maximums and	A1 M3 Lesson 19: Building New Functions—Translations
minimums; symmetries; end behavior and periodicity. Graph simple cases	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
by hand and use technology for complicated cases.	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

© 2023 Great Minds PBC | greatminds.org

Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.FIF.8 Translate between different but	This standard is fully addressed by the lessons aligned to its subsection.
equivalent forms of a function equation to reveal and explain different properties of the function.	
A1.FIF.8.a	A1 M4 Lesson 10: Zeros of Functions
Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1.FIF.9	A1 M3 Lesson 11: Comparing Functions
Compare properties of two functions given in different representations such as algebraic, graphical, tabular, or verbal.	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

South Carolina College and Career

Functions

Linear, Quadratic, and Exponential

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

A1.FLQE.1 Distinguish between situations that can be modeled with linear functions or exponential functions by recognizing situations in which one quantity changes at a constant rate per unit interval as opposed to those in which a quantity changes by a constant percent rate per unit interval.	A1 M5 Lesson 15: Calculating Interest A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 21: World Population Prediction A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population A1 M6 Topic A: Modeling Bivariate Quantitative Data
A1.FLQE.1.a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.	A1 M5 Lesson 19: Analyzing Exponential Growth
A1.FLQE.2 Create symbolic representations of linear and exponential functions, including arithmetic and geometric sequences, given graphs, verbal descriptions, and tables.	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Topic B: Developing Models for Contexts

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

A1.FLQE.3	A1 M5 Lesson 20: Comparing Growth of Functions
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or more generally as a polynomial function.	
A1.FLQE.5	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters in a linear or exponential function in terms of the context.	A1 M5 Lesson 19: Analyzing Exponential Growth
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Number and Quantity

Quantities

South Carolina College and Career
Ready Standards for MathematicsAligned Components of Eureka Math2A1.NQ.1A1 M6 Lesson 5: Solar System ModelsUse units of measurement to guide the
solution of multi-step tasks. Choose and
interpret appropriate labels, units, and
scales when constructing graphs and
other data displays.A1 M4 Lesson 25: Maximizing AreaA1.NQ.2A1 M4 Lesson 25: Maximizing Area

Label and define appropriate quantitiesA1 M6 Lesson 5: Solar System Modelsin descriptive modeling contexts.

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

A1.NQ.3	A1 M6 Lesson 5: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities in context.	

Number and Quantity

Real Number System

South Carolina College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
A1.NRNS.1	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving simple radicals and rational exponents in different forms.	A1 M5 Lesson 10: Rational Exponents
A1.NRNS.2	A1 M5 Lesson 9: Unit Fraction Exponents
Use the definition of the meaning of rational exponents to translate between rational exponent and radical forms.	A1 M5 Lesson 10: Rational Exponents
A1.NRNS.3	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Explain why the sum or product of rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	A1 M4 Lesson 17: Rewriting Square Roots

A1 | South Carolina College and Career Ready Standards for Mathematics Correlation to Eureka Math²

Statistics and Probability

Interpreting Data

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

A1.SPID.6 Using technology, create scatterplots	A1 M2 Lesson 15: Relationships Between Quantitative Variables A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
and analyze those plots to compare the fit of linear, quadratic, or exponential models to a given data set. Select the appropriate model, fit a function to the data set, and use the function to solve problems in the context of the data.	A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
A1.SPID.7 Create a linear function to graphically model data from a real-world problem and interpret the meaning of the slope and intercept(s) in the context of the given problem.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
A1.SPID.8 Using technology, compute and interpret the correlation coefficient of a linear fit.	A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data