EUREKA MATH².

7-8 | Utah Core State Standards for Mathematics Correlation to Eureka Math^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver *exponentially better* math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Ratios and Proportional Relationships

Analyze proportional relationships and use them to solve real-world and mathematical problems.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.RP.1	7-8 M2 Lesson 12: An Experiment with Ratios and Rates
Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $\frac{1}{2}$ mile in each $\frac{1}{4}$ hour, compute the unit rate as the complex fraction $(\frac{1}{2})/(\frac{1}{4})$ miles per hour, equivalently 2 miles per hour.	7–8 M2 Lesson 13: Exploring Tables of Proportional Relationships
7.RP.2	7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
Recognize and represent proportional	7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
relationships between quantities.	7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
7.RP.2.a	7-8 M2 Lesson 12: An Experiment with Ratios and Rates
Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane	7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
	7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
	7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
and observing whether the graph is a	7-8 M2 Lesson 19: Proportional Reasoning and Percents
straight line through the origin.	7-8 M5 Lesson 1: Motion and Speed

Utah Core State Standards for Mathematics	Aligned Components of Eureka Math ²
7.RP.2.b	7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
Identify the constant of proportionality	7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
(unit rate) in tables, graphs, equations, diagrams, and verbal descriptions	7-8 M2 Lesson 16: Applying Proportional Reasoning
of proportional relationships.	7-8 M4 Lesson 4: Comparing Proportional Relationships
	7-8 M4 Lesson 5: Proportional Relationships and Slope
7.RP.2.c	7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
Represent proportional relationships	7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
by equations. For example, if total cost <i>t</i> is proportional to the number <i>n</i> of items	7-8 M2 Lesson 16: Applying Proportional Reasoning
purchased at a constant price <i>p</i> , the	7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
relationship between the total cost and	7-8 M2 Lesson 18: Handstand Sprint
the number of items can be expressed as $t = pn$.	7-8 M2 Lesson 19: Proportional Reasoning and Percents
	7-8 M2 Lesson 20: Commissions, Fees, and Taxes
	7-8 M5 Lesson 1: Motion and Speed
7.RP.2.d	7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0, 0)$ and $(1, r)$ where r is the unit rate.	7-8 M2 Lesson 15: Relating Representations of Proportional Relationships

@ 2023 Great Minds PBC | greatminds.org

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.RP.3	7-8 M2 Lesson 16: Applying Proportional Reasoning
Use proportional relationships to solve	7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
multi-step ratio and percent problems. Examples: simple interest, tax, markups	7-8 M2 Lesson 18: Handstand Sprint
and markdowns, gratuities and	7-8 M2 Lesson 19: Proportional Reasoning and Percents
commissions, fees, percent increase and	7-8 M2 Lesson 20: Commissions, Fees, and Taxes
decrease, percent error.	7-8 M2 Lesson 21: Discount, Markup, Sales Tax, and Tip
	7-8 M2 Lesson 22: Percent Increase and Percent Decrease
	7-8 M2 Lesson 23: What Is the Best Deal?
	7-8 M2 Lesson 24: Simple Interest
	7-8 M2 Lesson 25: Applying Percent Error

The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.NS.1	7-8 M1 Lesson 1: Add and Subtract Rational Numbers
Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.	7–8 M1 Lesson 5: Subtracting Rational Numbers

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.NS.1.a	7-8 M1 Lesson 1: Add and Subtract Rational Numbers
Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.	
7.NS.1.b	7-8 M1 Lesson 1: Add and Subtract Rational Numbers
Understand $p + q$ as the number located a distance $ q $ from p in the positive or negative direction, depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.	
7.NS.1.c	7-8 M1 Lesson 3: Finding Distances to Find Differences
Understand subtraction of rational	7-8 M1 Lesson 4: Subtracting Integers
numbers as adding the additive inverse, p-q=p+(-q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	7–8 M1 Lesson 5: Subtracting Rational Numbers
7.NS.1.d	7-8 M1 Lesson 2: Kakooma® with Rational Numbers
Apply properties of operations	7-8 M1 Lesson 4: Subtracting Integers
as strategies to add and subtract rational numbers.	7–8 M1 Lesson 5: Subtracting Rational Numbers

Litch Cons State Standard

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.NS.2	7-8 M1 Lesson 6: Multiplying Integers and Rational Numbers
Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	7-8 M1 Lesson 8: Dividing Integers and Rational Numbers
7.NS.2.a	7-8 M1 Lesson 6: Multiplying Integers and Rational Numbers
Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	7–8 M1 Lesson 7: Exponential Expressions and Relating Multiplication to Division
7.NS.2.b	7-8 M1 Lesson 7: Exponential Expressions and Relating Multiplication to Division
Understand that integers can be divided, provided the divisor is not zero, and that every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-\left(\frac{p}{q}\right) = \frac{-p}{q} = \frac{p}{-q}$. Interpret quotients of rational numbers by describing real-world contexts.	7–8 M1 Lesson 8: Dividing Integers and Rational Numbers

Utah Core State Standards for Mathematics	Aligned Components of Eureka Math ²
7.NS.2.c	7-8 M1 Lesson 6: Multiplying Integers and Rational Numbers
Apply properties of operations as strategies to multiply and divide rational numbers.	7-8 M1 Lesson 7: Exponential Expressions and Relating Multiplication to Division 7-8 M1 Lesson 8: Dividing Integers and Rational Numbers
7.NS.2.d	7-8 M1 Lesson 9: Decimal Expansions of Rational Numbers
Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.	7–8 M1 Lesson 22: Rational and Irrational Numbers 7–8 M2 Lesson 6: Expressing Repeating Decimals as Fractions
7.NS.3	7-8 M1 Lesson 5: Subtracting Rational Numbers
Solve real-world and mathematical problems involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions.	7–8 M1 Lesson 8: Dividing Integers and Rational Numbers

The Number System

Know that there are numbers that are not rational, and approximate them by rational numbers.

Utah Core State Standards for Mathematics Aligned Components of *Eureka Math*²

8.NS.1	7-8 M1 Lesson 9: Decimal Expansions of Rational Numbers
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers, show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	7-8 M1 Lesson 22: Rational and Irrational Numbers 7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes
8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	 7-8 M1 Lesson 20: Using the Pythagorean Theorem 7-8 M1 Lesson 21: Approximating Values of Roots 7-8 M1 Lesson 22: Rational and Irrational Numbers
8.NS.3 Understand how to perform operations and simplify radicals with emphasis on square roots.	 7-8 M1 Lesson 18: Solving Equations with Squares and Cubes 7-8 M1 Lesson 20: Using the Pythagorean Theorem 7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes

Expressions and Equations

Use properties of operations to generate equivalent expressions.

Utah Core State Standards Aligned Components of *Eureka Math*²

7.EE.1	7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	
7.EE.2	7–8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
Understand that rewriting an expression in different forms in a problem context can shed light on the problem, and how the quantities in it are related. For example, $a + 0.05a = 1.05a$ means that "increase by 5%" is the same as "multiply by 1.05."	7–8 M2 Lesson 21: Discount, Markup, Sales Tax, and Tip 7–8 M2 Lesson 22: Percent Increase and Percent Decrease

Utah Core State Standards Aligned Components of Eureka Math² for Mathematics 7-8 M1 Lesson 8: Dividing Integers and Rational Numbers 7.EE.3 7-8 M2 Lesson 10: Another Possible Number of Solutions Solve multi-step real-life and mathematical problems posed with 7-8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems positive and negative rational numbers 7-8 M2 Lesson 7: Solving Multi-Step Equations in any form (whole numbers, fractions, and decimals), using tools strategically. 7-8 M2 Lesson 8: Solving Equations with Rational Coefficients Apply properties of operations 7-8 M2 Lesson 9: Linear Equations with More Than One Solution to calculate with numbers in any form, 7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems convert between forms as appropriate, and assess the reasonableness of answers 7-8 M2 Lesson 18: Handstand Sprint using mental computation and 7-8 M2 Lesson 23: What Is the Best Deal? estimation strategies. For example: If 7-8 M2 Lesson 24: Simple Interest a woman making \$25 an hour gets a 10%raise, she will make an additional $\frac{1}{10}$ of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a towel bar $9\frac{3}{4}$ inches long in the center of a door that is $27\frac{1}{2}$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. 7.EE.4 7-8 M2 Lesson 3: Solving Equations 7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations

© 2023 Great Minds PBC | greatminds.org

and inequalities to solve problems by reasoning about the quantities.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.EE.4.a	7-8 M2 Lesson 3: Solving Equations
Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?	7–8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities
7.EE.4.b	7-8 M2 Lesson 4: Using Equations to Solve Inequalities
Solve word problems leading to inequalities of the form $px + q > r$ or px + q < r, where p , q , and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.	7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities

Expressions and Equations

Work with radical and integer exponents.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times (3^{-5}) = (3^{-3}) = \frac{1}{3^3} = \frac{1}{27}$.	 7-8 M1 Lesson 7: Exponential Expressions and Relating Multiplication to Division 7-8 M1 Lesson 11: Products of Exponential Expressions with Positive Whole-Number Exponents 7-8 M1 Lesson 12: More Properties of Exponents 7-8 M1 Lesson 13: Making Sense of Integer Exponents
8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	 7-8 M1 Lesson 18: Solving Equations with Squares and Cubes 7-8 M1 Lesson 19: The Pythagorean Theorem 7-8 M1 Lesson 20: Using the Pythagorean Theorem 7-8 M1 Lesson 21: Approximating Values of Roots 7-8 M1 Lesson 22: Rational and Irrational Numbers 7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes
8.EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^8 and the population of the world as 7×10^9 , and determine that the world population is more than 20 times larger.	 7-8 M1 Lesson 10: Large and Small Positive Numbers 7-8 M1 Lesson 14: Writing Very Large and Very Small Numbers in Scientific Notation 7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation 7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation 7-8 M1 Lesson 17: Get to the Point

8.EE.47-8 M1 Lesson 14: Writing Very Large and Very Small Numbers in Scientific NotationPerform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation 7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation 7-8 M1 Lesson 17: Get to the Point	for Mathematics	Aligned Components of Eureka Math ²
expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation	8.EE.4	7-8 M1 Lesson 14: Writing Very Large and Very Small Numbers in Scientific Notation
that has been generated by technology.	expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor	7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation

Expressions and Equations

Understand the connections between proportional relationships, lines, and linear relationships.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
8.EE.5	7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	7-8 M4 Lesson 4: Comparing Proportional Relationships 7-8 M4 Lesson 5: Proportional Relationships and Slope

Utah Core State Standards
for MathematicsAligned Components of Eureka Math28.EE.67-8 M4 Lesson 5: Proportional Relationships and SlopeUse similar triangles to explain why
the slope m is the same between any
two distinct points on a non-vertical
line in the coordinate plane; derive the
equation y = mx for a line through the
origin and the equation y = mx + b for
a line intercepting the vertical axis at b.7-8 M4 Lesson 6: Slopes of Rising Lines and Falling Lines
7-8 M4 Lesson 7: Using Coordinates to Find Slope
7-8 M4 Lesson 8: Slope-Intercept Form of the Equation of a Line

Expressions and Equations

Analyze and solve linear equations and inequalities and pairs of simultaneous linear equations.

Utah Core State Standards for Mathematics	Aligned Components of Eureka Math ²
8.EE.7	7-8 M2 Lesson 4: Using Equations to Solve Inequalities
Solve linear equations and inequalities in one variable.	7–8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems
8.EE.7.a	7-8 M2 Lesson 10: Another Possible Number of Solutions
Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, a = a, or $a = b$ results (where a and b are	7–8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems 7–8 M2 Lesson 9: Linear Equations with More Than One Solution
a = a, or $a = b$ results (where a and b are different numbers).	

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
8.EE.7.b	7-8 M2 Lesson 3: Solving Equations
Solve single-variable linear equations	7-8 M2 Lesson 4: Using Equations to Solve Inequalities
and inequalities with rational number coefficients, including equations and	7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities
inequalities whose solutions require	7-8 M2 Lesson 6: Expressing Repeating Decimals as Fractions
expanding expressions using the	7-8 M2 Lesson 10: Another Possible Number of Solutions
distributive property and collecting like terms.	7-8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems
ince terrifis.	7-8 M2 Lesson 7: Solving Multi-Step Equations
	7-8 M2 Lesson 8: Solving Equations with Rational Coefficients
	7-8 M2 Lesson 9: Linear Equations with More Than One Solution
8.EE.7.c	7-8 M1 Lesson 16: Solving Absolute Value Equations
Solve single-variable absolute value equations.	
8.EE.8	7-8 M4 Lesson 16: Choosing a Solution Method
Analyze and solve pairs of simultaneous linear equations.	7-8 M4 Lesson 20: Modeling a Real-World Problem
8.EE.8.a	7-8 M4 Lesson 11: Introduction to Systems of Linear Equations
Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points	7-8 M4 Lesson 12: Identifying Solutions
	7-8 M4 Lesson 13: More Than One Solution
	7-8 M4 Lesson 16: Choosing a Solution Method
of intersection satisfy both equations	7-8 M4 Lesson 19: Back to the Coordinate Plane
simultaneously.	7-8 M4 Lesson 20: Modeling a Real-World Problem

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
8.EE.8.b	7-8 M4 Lesson 11: Introduction to Systems of Linear Equations
Solve systems of two linear equations in two variables graphically, approximating when solutions are not integers and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.	 7-8 M4 Lesson 12: Identifying Solutions 7-8 M4 Lesson 13: More Than One Solution 7-8 M4 Lesson 15: The Substitution Method 7-8 M4 Lesson 16: Choosing a Solution Method 7-8 M4 Lesson 19: Back to the Coordinate Plane 7-8 M4 Lesson 20: Modeling a Real-World Problem
8.EE.8.c Solve real-world and mathematical problems leading to two linear equations in two variables graphically. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	7–8 M4 Lesson 17: Writing and Solving Systems of Equations for Mathematical Problems 7–8 M4 Lesson 18: Writing and Solving Systems of Equations for Real-World Problems 7–8 M4 Lesson 20: Modeling a Real-World Problem

A 11 £ F. . . .

Functions

Define, evaluate, and compare functions.

Utah Core State Standards for Mathematics

8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	 7-8 M5 Lesson 1: Motion and Speed 7-8 M5 Lesson 2: Definition of a Function 7-8 M5 Lesson 4: More Examples of Functions 7-8 M5 Lesson 5: Graphs of Functions and Equations
8.F.2 Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value 7-8 M5 Lesson 8: Comparing Functions
8.F.3 Interpret the equation $y = mx + b$ as defining a linear function whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$, giving the area of a square as a function of its side length, is not linear because its graph contains the points $(1, 1), (2, 4)$ and $(3, 9)$, which are not on a straight line.	 7-8 M5 Lesson 3: Linear Functions and Proportionality 7-8 M5 Lesson 4: More Examples of Functions 7-8 M5 Lesson 5: Graphs of Functions and Equations 7-8 M5 Lesson 10: Graphs of Nonlinear Functions 7-8 M5 Lesson 6: Linear Functions and Rate of Change

Functions

Use functions to model relationships between quantities

Utah Core State Standards for Mathematics

MA.8.F.4	7-8 M5 Lesson 3: Linear Functions and Proportionality
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	 7-8 M5 Lesson 4: More Examples of Functions 7-8 M5 Lesson 6: Linear Functions and Rate of Change 7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value 7-8 M5 Lesson 23: Applications of Volume
MA.8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	7-8 M5 Lesson 9: Increasing and Decreasing Functions 7-8 M5 Lesson 10: Graphs of Nonlinear Functions

Draw, construct, and describe geometrical figures, and describe the relationships between them.

Utah Core State Standards for Mathematics

7.G.1	7–8 M3 Lesson 18: Scale Drawings
Solve problems involving scale drawings	7-8 M3 Lesson 19: Finding Actual Distances from a Scale Drawing
of geometric figures, such as computing actual lengths and areas from a scale	7-8 M3 Lesson 20: Scale and Scale Factor
drawing and reproducing a scale drawing	7–8 M3 Lesson 21: Modeling with Scale Drawings
at a different scale.	7–8 M3 Lesson 22: Dilations
	7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
	7–8 M3 Lesson 24: Figures and Dilations
	7-8 M5 Lesson 15: Proportionality and Scale Factor of Cross Sections
7.G.2	7-8 M3 Lesson 1: Sketching and Constructing Geometric Figures
Draw (freehand, with ruler and protractor,	7–8 M3 Lesson 2: Conditions of Unique Triangles
and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing	7–8 M3 Lesson 3: Exploring and Constructing Circles
	7–8 M3 Lesson 13: Angle Sum of a Triangle
when the conditions determine a unique	
triangle, more than one triangle, or no triangle.	
7.G.3	7-8 M5 Lesson 13: Understanding Planes and Cross Sections
Describe the two-dimensional figures that result from slicing three-dimensional	7-8 M5 Lesson 14: Cross Section Scavenger Hunt
	7-8 M5 Lesson 15: Proportionality and Scale Factor of Cross Sections
figures, as in plane sections of right rectangular prisms and right	
rectangular pyramids.	

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

Utah Core State Standards for Mathematics

7.G.5	7–8 M2 Lesson 1: Finding Unknown Angle Measures
Use facts about supplementary,	7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
complementary, vertical, and adjacent	7-8 M2 Lesson 7: Solving Multi-Step Equations
angles in a multi-step problem to write, and use them to solve simple equations	7-8 M3 Lesson 12: Lines Cut by a Transversal
for an unknown angle in a figure.	7–8 M3 Lesson 13: Angle Sum of a Triangle
	7-8 M3 Lesson 14: Exterior Angles of Triangles
7.G.6	7-8 M5 Lesson 16: Volume of Prisms
Solve real-world and mathematical	7–8 M5 Lesson 11: Surface Areas of Prisms and Pyramids
problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	7-8 M5 Lesson 17: Volume of Cylinders
	7–8 M5 Lesson 18: Designing a Fish Tank
	7–8 M5 Lesson 19: Volumes of Pyramids and Cones
	7-8 M5 Lesson 21: Volume of Composite Solids
	7-8 M5 Lesson 22: Volumes of Truncated Cones and Pyramids
	7–8 M5 Lesson 23: Applications of Volume

Understand congruence and similarity using physical models, transparencies, or geometry software.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
8.G.1	7-8 M3 Lesson 7: Motions of the Plane
Verify experimentally the properties of rotations, reflections, and translations:	7-8 M3 Lesson 8: Translations, Reflections, and Rotations
8.G.1.a	7-8 M3 Lesson 7: Motions of the Plane
Lines are taken to lines, and line segments to line segments of the same length.	7–8 M3 Lesson 8: Translations, Reflections, and Rotations
8.G.1.b	7-8 M3 Lesson 7: Motions of the Plane
Angles are taken to angles of the	7-8 M3 Lesson 8: Translations, Reflections, and Rotations
same measure.	7–8 M3 Lesson 12: Lines Cut by a Transversal
8.G.1.c	7-8 M3 Lesson 7: Motions of the Plane
Parallel lines are taken to parallel lines.	7-8 M3 Lesson 8: Translations, Reflections, and Rotations
8.G.2	7-8 M3 Lesson 10: Sequencing the Rigid Motions
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first	7–8 M3 Lesson 11: Showing Figures Are Congruent
	7–8 M3 Lesson 12: Lines Cut by a Transversal
by a sequence of rotations, reflections,	
and translations; given two congruent	
figures, describe a sequence that exhibits the congruence between them.	

Aligned Components of Eureka Math² 7-8 M3 Lesson 7: Motions of the Plane 8.G.3 Observe that orientation of the plane 7-8 M3 Lesson 8: Translations, Reflections, and Rotations is preserved in rotations and translations, 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane but not with reflections. Describe the 7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations effect of dilations, translations, rotations, and reflections on two-dimensional 7-8 M3 Lesson 26: Dilations on the Coordinate Plane figures using coordinates. 7-8 M3 Lesson 27: Similar Figures 8.G.4 Understand that a two-dimensional 7-8 M3 Lesson 28: Exploring Angles in Similar Triangles figure is similar to another if the second can be obtained from the first. by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. 8.G.5 7-8 M3 Lesson 12: Lines Cut by a Transversal Use informal arguments to establish 7-8 M3 Lesson 13: Angle Sum of a Triangle facts about the angle sum and exterior 7-8 M3 Lesson 14: Exterior Angles of Triangles angle of triangles, about the angles 7-8 M3 Lesson 28: Exploring Angles in Similar Triangles created when parallel lines are cut by a

Utah Core State Standards for Mathematics

7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths

this is so.

transversal, and the angle-angle criterion

for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why

Understand and apply the Pythagorean Theorem and its converse.

Utah Core State Standards for Mathematics

8.G.6	7-8 M3 Lesson 15: Proving the Pythagorean Theorem
Explore and explain proofs of the Pythagorean Theorem and its converse.	7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem
8.G.7	7-8 M1 Lesson 19: The Pythagorean Theorem
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	 7-8 M1 Lesson 20: Using the Pythagorean Theorem 7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem 7-8 M3 Lesson 17: Applications of the Pythagorean Theorem 7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths 7-8 M5 Lesson 19: Volumes of Pyramids and Cones
8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	7-8 M3 Lesson 17: Applications of the Pythagorean Theorem

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Utah Core State Standards for Mathematics

Aligned Components of Eureka Math²

8.G.9	7-8 M5 Lesson 17: Volume of Cylinders
Know the formulas for the volumes	7–8 M5 Lesson 18: Designing a Fish Tank
of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.	7–8 M5 Lesson 19: Volumes of Pyramids and Cones
	7-8 M5 Lesson 20: Volume of Spheres
	7–8 M5 Lesson 21: Volume of Composite Solids
	7-8 M5 Lesson 22: Volumes of Truncated Cones and Pyramids
	7-8 M5 Lesson 23: Applications of Volume

Statistics and Probability

Use random sampling to draw inferences about a population.

Utah Core State Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.SP.1	7-8 M6 Lesson 10: Populations and Samples
Understand that statistics can be used	7-8 M6 Lesson 11: Selecting a Sample
to gain information about a population by examining a sample of the population, and that generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling is more likely to produce representative samples and support valid inferences.	7–8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.SP.2	7-8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean
Use data from a random sample to draw	7–8 M6 Lesson 13: Sampling Variability and the Effect of Sample Size
inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	7–8 M6 Lesson 14: Sampling Variability When Estimating a Population Proportion

Statistics and Probability

7.SP Draw informal comparative inferences about two populations.

Utah Core State Standards for Mathematics	Aligned Components of Eureka Math ²
7.SP.4	7–8 M6 Lesson 15: Comparing Sample Means
Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh grade science book are generally longer than the words in a chapter of a fourth grade science book.	7–8 M6 Lesson 16: Comparing Population Means 7–8 M6 Lesson 17: Memory Games

Statistics and Probability

Investigate chance processes and develop, use, and evaluate probability models.

Utah Core State Standards for Mathematics

7.SP.6	7–8 M6 Lesson 1: What Is Probability?
Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.	7-8 M6 Lesson 2: Outcomes of Chance Experiments 7-8 M6 Lesson 5: Outcomes That Are Not Equally Likely 7-8 M6 Lesson 7: Picking Blue
7.SP.7	7-8 M6 Lesson 3: Theoretical Probability
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.	
7.SP.7.a	7-8 M6 Lesson 3: Theoretical Probability
Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.	7–8 M6 Lesson 6: The Law of Large Numbers

for Mathematics	Aligned Components of Eureka Math ²
7.SP.7.b	7-8 M6 Lesson 6: The Law of Large Numbers
Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?	7–8 M6 Lesson 7: Picking Blue
7.SP.8	7-8 M6 Lesson 4: Multistage Experiments
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.	7–8 M6 Lesson 8: Probability Simulations
7.SP.8.a	7-8 M6 Lesson 4: Multistage Experiments
Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	7–8 M6 Lesson 8: Probability Simulations

Utah Core State Standards for Mathematics

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
7.SP.8.b	7-8 M6 Lesson 4: Multistage Experiments
Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	
7.SP.8.c	7-8 M6 Lesson 8: Probability Simulations
Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?	7–8 M6 Lesson 9: Simulations with Random Number Tables

A 11. . . of Frencher Marth?

7-8 | Utah Core State Standards for Mathematics Correlation to Eureka Math²

Statistics and Probability

Investigate patterns of association in bivariate data.

Utah Core State Standards for Mathematics

8.SP.1	7-8 M6 Lesson 18: Scatter Plots
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	7–8 M6 Lesson 19: Patterns in Scatter Plots
8.SP.2	7-8 M6 Lesson 20: Informally Fitting a Line to Data
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	7–8 M6 Lesson 21: Linear Models

Utah Core State Standards for Mathematics

8.SP.3	7-8 M6 Lesson 20: Informally Fitting a Line to Data
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	7–8 M6 Lesson 21: Linear Models
8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	 7-8 M6 Lesson 22: Bivariate Categorical Data 7-8 M6 Lesson 23: Association in Bivariate Categorical Data 7-8 M6 Lesson 24: Analyzing Bivariate Categorical Data