EUREKA MATH².

Mathematics I | Mathematics Standards of Learning for Virginia Public Schools Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver *exponentially better* math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Process Goals for Students	Aligned Components of Eureka Math ²
Mathematical Problem Solving	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
Mathematical Communication	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
Mathematical Reasoning	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
Mathematical Connections	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
Mathematical Representations	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.

Probability and Statistics

8.PS.3 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on scatterplots.

Mathematics Standards of Learning for Virginia Public Schools

Aligned Components of Eureka Math²

8.PS.3.a	8 M6 Lesson 16: Using the Investigative Process
Formulate questions that require the	8 M6 Lesson 17: Analyzing the Model
collection or acquisition of data with	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
a focus on scatterplots.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
8.PS.3.b Determine the data needed to answer a formulated question and collect the data (or acquire existing data) of no more than 20 items using various methods (e.g., observations, measurement, surveys, experiments).	8 M6 Lesson 16: Using the Investigative Process 8 M6 Lesson 17: Analyzing the Model Math 1 M2 Lesson 22: Relationships Between Quantitative Variables Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

Expressions and Operations

A.EO.1 The student will represent verbal quantitative situations algebraically and evaluate these expressions for given replacement values of the variables.

	Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
	A.EO.1.a	Math 1 M1 Lesson 2: Looking for Patterns
Translate between verbal quantitative situations and algebraic expressions, including contextual situations.	Math 1 M1 Lesson 4: Interpreting Linear Expressions	
	Math 1 M1 Lesson 5: Printing Presses	
	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable	
		Math 1 M1 Lesson 16: Applying Absolute Value

Mathematics Standards of Learning
for Virginia Public SchoolsAligned Components of Eureka Math2A.EO.1.bSupplemental material is necessary to address this standard.Evaluate algebraic expressions which
include absolute value, square roots, and
cube roots for given replacement values
to include rational numbers, without
rationalizing the denominator.Supplemental material is necessary to address this standard.

Equations and Inequalities

A.EI.1 The student will represent, solve, explain, and interpret the solution to multistep linear equations and inequalities in one variable and literal equations for a specified variable.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²	
A.EI.1.a	Math 1 M1 Lesson 5: Printing Presses	
Write a linear equation or inequality in one variable to represent a contextual situation.	Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable	
	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable	
	Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations	
	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable	
	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable	
	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities	
	Math 1 M1 Lesson 15: Solving Absolute Value Inequalities	

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
A.EI.1.b Solve multistep linear equations in one variable, including those in contextual situations, by applying the properties of real numbers and/or properties of equality.	Math 1 M1 Lesson 5: Printing Presses Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable Math 1 M1 Lesson 7: Solving Linear Equations in One Variable Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable Math 1 M1 Lesson 15: Solving Absolute Value Equations
A.EI.1.c Solve multistep linear inequalities in one variable algebraically and graph the solution set on a number line, including those in contextual situations, by applying the properties of real numbers and/or properties of inequality.	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable Math 1 M1 Lesson 12: Solution Sets of Compound Statements Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities Math 1 M1 Lesson 15: Solving Absolute Value Inequalities
A.EI.1.d Rearrange a formula or literal equation to solve for a specified variable by applying the properties of equality.	Math 1 M1 Lesson 10: Rearranging Formulas
A.EI.1.e Determine if a linear equation in one variable has one solution, no solution, or an infinite number of solutions.	Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable Math 1 M1 Lesson 7: Solving Linear Equations in One Variable Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

© 2024 Great Minds PBC | greatminds.org

for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
A.EI.1.f	Math 1 M1 Lesson 5: Printing Presses
Verify possible solution(s) to multistep	Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
linear equations and inequalities in one variable algebraically, graphically, and with technology to justify the reasonableness of the answer(s). Explain the solution method and interpret solutions for problems given in context.	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
	Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
	Supplemental material is necessary to address verifying possible solutions with technology.

Equations and Inequalities A.EI.2 The student will represent, solve, explain, and interpret the solution to a system of two linear equations, a linear inequality in two variables, or a system of two linear inequalities in two variables.

Mathematics Standards of Learning for Virginia Public Schools

A.EI.2.a Create a system of two linear equations in two variables to represent a contextual situation.	Math 1 M2 Lesson 8: Low-Flow Showerhead Math 1 M2 Lesson 12: Applications of Systems of Equations
A.EI.2.b Apply the properties of real numbers and/or properties of equality to solve a system of two linear equations in two variables, algebraically and graphically.	Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

for Virginia Public Schools	Aligned Components of Eureka Math ²
A.EI.2.c	Math 1 M2 Lesson 9: Systems of Linear Equations in Two Variables
Determine whether a system of two linear	Math 1 M2 Lesson 10: A New Way to Solve Systems
equations has one solution, no solution,	Math 1 M2 Lesson 11: The Elimination Method
or an infinite number of solutions.	Math 1 M2 Lesson 12: Applications of Systems of Equations
A.EI.2.d Create a linear inequality in two variables to represent a contextual situation.	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables Math 1 M2 Lesson 15: Applications of Linear Inequalities
A.EI.2.e Represent the solution of a linear inequality in two variables graphically on a coordinate plane.	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables Math 1 M2 Lesson 15: Applications of Linear Inequalities
A.EI.2.f	Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Create a system of two linear	Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
inequalities in two variables to represent	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
a contextual situation.	Math 1 M6 Lesson 10: Designing a Fundraiser
A.EI.2.g	Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Represent the solution set of a system	Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
of two linear inequalities in two variables,	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
graphically on a coordinate plane.	Math 1 M6 Lesson 10: Designing a Fundraiser

for Virginia Public Schools	Aligned Components of Eureka Math-
A.EI.2.h	Math 1 M2 Topic B: Systems of Linear Equations in Two Variables
Verify possible solution(s) to a system of two linear equations, a linear inequality in two variables, or a system of two linear inequalities algebraically, graphically, and with technology to justify the reasonableness of the answer(s). Explain the solution method and interpret solutions for problems given in context.	Math 1 M2 Topic C: Linear Inequalities and Systems of Linear Inequalities in Two Variables Math 1 M6 Lesson 10: Designing a Fundraiser

Functions

A.F.1 The student will investigate, analyze, and compare linear functions algebraically and graphically, and model linear relationships.

Mathematics Standards of Learning for Virginia Public Schools

A.F.1.a Determine and identify the domain, range, zeros, slope, and intercepts of a linear function, presented algebraically or graphically, including the interpretation of these characteristics in contextual situations.	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph Math 1 M3 Lesson 11: Comparing Functions
A.F.1.b Investigate and explain how transformations to the parent function y = x affect the rate of change (slope) and the y-intercept of a linear function.	Math 1 M3 Lesson 17: Building New Functions—Translations Math 1 M3 Lesson 19: Building New Functions—Vertical Scaling Supplemental material is necessary to fully address this standard.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
A.F.1.c	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Write equivalent algebraic forms of linear	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
functions, including slope-intercept form, standard form, and point-slope form, and analyze and interpret the information revealed by each form.	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
A.F.1.d	This standard is fully addressed by the lessons aligned to its subsections.
Write the equation of a linear function to model a linear relationship between two quantities, including those that can represent contextual situations. Writing the equation of a linear function will include the following situations:	
A.F.1.d.i	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
given the graph of a line;	
A.F.1.d.ii	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
given two points on the line whose coordinates are integers;	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
A.F.1.d.iii	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
given the slope and a point on the line whose coordinates are integers;	
A.F.1.d.iv	8 M4 Lesson 14: Lines with Special Characteristics
vertical lines as $x = a$; and	

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math ²
A.F.1.d.v	8 M4 Lesson 14: Lines with Special Characteristics
horizontal lines as $y = c$.	
A.F.1.e	Math 1 M2 Lesson 6: Proving the Parallel Criterion
Write the equation of a line parallel or perpendicular to a given line through a given point.	Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
A.F.1.f	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Graph a linear function in two variables,	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
with and without the use of technology, including those that can represent contextual situations.	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$
	Supplemental material is necessary to address graphing a linear function with technology.
A.F.1.g	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
For any value, <i>x</i> , in the domain of <i>f</i> ,	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
determine $f(x)$, and determine x given any value $f(x)$ in the range of f , given an algebraic or graphical representation	Math 1 M3 Lesson 2: Interpreting and Using Function Notation
	Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
of a linear function.	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$
	Math 1 M3 Lesson 7: Representations of Functions
	Math 1 M6 Lesson 9: Solar System Models

@ 2024 Great Minds PBC | greatminds.org

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
A.F.1.h	8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
Compare and contrast the characteristics	8 M6 Lesson 8: Comparing Functions
of linear functions represented	Math 1 M3 Lesson 2: Interpreting and Using Function Notation
and in contextual situations.	Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$
	Math 1 M3 Lesson 7: Representations of Functions

Functions

A.F.2 The student will investigate, analyze, and compare characteristics of functions, including quadratic and exponential functions, and model quadratic and exponential relationships.

Mathematics Standards of Learning for Virginia Public Schools

Α.Γ.2.α	Math 1 M3 Topic A: Functions and Their Graphs
Determine whether a relation, represented by a set of ordered pairs, a table, a mapping, or a graph is a function; for relations that are functions,	Math 1 M5 Lesson 1: Exploring Patterns Math 1 M5 Lesson 2: The Recursive Challenge Math 1 M5 Lesson 3: Recursive Formulas for Sequences
determine the domain and range.	Math 1 M5 Lesson 4: Explicit Formulas for Sequences

for Virginia Public Schools	
A.F.2.b	A1 M4 Topic A: Quadratic Functions and Their Graphs
Given an equation or graph, determine	A1 M4 Lesson 10: Zeros of Functions
key characteristics of a quadratic function	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
vertex (maximum or minimum), and	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
domain and range (including when	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
restricted by context); interpret key	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
situations, where applicable.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
A.F.2.c	Math 1 M3 Topic D: Transformations of Functions
Graph a quadratic function, $f(x)$, in two	A1 M4 Lesson 4: Graphs of Quadratic Functions
variables using a variety of strategies, including transformations $f(x) + k$ and	A1 M4 Lesson 10: Zeros of Functions
kf(x), where k is limited to rational values.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 20: Art with Transformations
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 24: Another Look at Systems of Equations

Mathematics Standards of Learning for Virginia Public Schools

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
A.F.2.e Given an equation or graph of an exponential function in the form $y = ab^x$ (where <i>b</i> is limited to a natural number), interpret key characteristics, including <i>y</i> -intercepts and domain and range; interpret key characteristics as related to contextual situations, where applicable.	Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 8: Graphing Exponential Functions Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 14: Exponential Growth Math 1 M5 Lesson 16: Modeling Populations
A.F.2.f Graph an exponential function, f(x), in two variables using a variety of strategies, including transformations f(x) + k and $kf(x)$, where k is limited to rational values.	Math 1 M5 Lesson 8: Graphing Exponential Functions Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A.F.2.g For any value, x , in the domain of f , determine $f(x)$ of a quadratic or exponential function. Determine x given any value $f(x)$ in the range of f of a quadratic function. Explain the meaning of x and $f(x)$ in context.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions Math 1 M5 Lesson 1: Exploring Patterns Math 1 M5 Lesson 2: The Recursive Challenge Math 1 M5 Lesson 3: Recursive Formulas for Sequences Math 1 M5 Lesson 4: Explicit Formulas for Sequences Math 1 M6 Lesson 8: The Deal

© 2024 Great Minds PBC | greatminds.org

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
A.F.2.h	Math 1 M5 Lesson 16: Modeling Populations
Compare and contrast the key characteristics of linear functions $(f(x) = x)$, quadratic functions $(f(x) = x^2)$, and exponential functions $(f(x) = b^x)$ using tables and graphs.	Math 1 M5 Lesson 17: Average Rate of Change Math 1 M5 Lesson 18: Analyzing Exponential Growth Math 1 M5 Lesson 19: Comparing Growth of Functions Math 1 M5 Lesson 20: World Population Prediction Math 1 M5 Lesson 21: A Closer Look at Populations

Statistics

A.ST.1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on representing bivariate data in scatterplots and determining the curve of best fit using linear and quadratic functions.

Mathematics Standards of Learning for Virginia Public Schools

A.ST.1.d	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Given a table of ordered pairs or a scatterplot representing no more than 30 data points, use available technology to determine whether a linear or quadratic function would represent	Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 25: Calculating and Analyzing Residuals Math 1 M2 Lesson 26: Analyzing Residuals Math 1 M2 Lesson 27: Interpreting Correlation
the relationship, and if so, determine the equation of the curve of best fit.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math ²
A.ST.1.e Use linear and quadratic regression methods available through technology to write a linear or quadratic function that represents the data where appropriate and describe the strengths and weaknesses of the model.	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea
A.ST.1.f Use a linear model to predict outcomes and evaluate the strength and validity of these predictions, including through the use of technology.	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 25: Calculating and Analyzing Residuals Math 1 M2 Lesson 26: Analyzing Residuals Math 1 M2 Lesson 27: Interpreting Correlation Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea
A.ST.1.g Investigate and explain the meaning of the rate of change (slope) and <i>y</i> -intercept (constant term) of a linear model in context.	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

for Virginia Public Schools	Aligned Components of <i>Eureka Math²</i>
A.ST.1.h	Math 1 M1 Lesson 1: A Powerful Trio
Analyze relationships between two	Math 1 M2 Topic E: Numerical Data on Two Variables
in a scatterplot.	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
·	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
A.ST.1.i	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Make conclusions based on the	Math 1 M2 Lesson 24: Modeling Relationships with a Line
analysis of a set of bivariate data and communicate the results.	Math 1 M2 Lesson 27: Interpreting Correlation
	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea

. .. . -.

Reasoning, Lines and Transformations

G.RLT.3 The student will solve problems, including contextual problems, involving symmetry and transformation.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
G.RLT.3.a	Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Locate, count, and draw lines of symmetry given a figure, including figures in context.	

Mathematics Standards of Learning Aligned Components of Eureka Math² for Virginia Public Schools Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry G.RLT.3.b Determine whether a figure has point symmetry, line symmetry, both, or neither, including figures in context. This standard is fully addressed by the lessons aligned to its subsections. G.RLT.3.c Given an image or preimage, identify the transformation or combination of transformations that has/have occurred. Transformations include: G.RLT.3.c.i Math 1 M4 Lesson 1: Geometric Transformations Math 1 M4 Lesson 2: Translations of the Coordinate Plane translations: Math 1 M4 Lesson 5: Proving the Perpendicular Criterion Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions Math 1 M4 Lesson 14: Transformations of the Coordinate Plane Math 1 M4 Lesson 15: Designs with Rigid Motions Math 1 M4 Lesson 16: Congruent Figures G.RLT.3.c.ii Math 1 M4 Lesson 1: Geometric Transformations reflections over any horizontal or vertical Math 1 M4 Lesson 4: Reflections of the Coordinate Plane line or the lines y = x or y = -x; Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions Math 1 M4 Lesson 14: Transformations of the Coordinate Plane Math 1 M4 Lesson 15: Designs with Rigid Motions Math 1 M4 Lesson 16: Congruent Figures Supplemental material is necessary to address reflections over the lines y = x and y = -x.

for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
G.RLT.3.c.iii	Math 1 M4 Lesson 1: Geometric Transformations
clockwise or counterclockwise rotations	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
of 90°, 180°, 270°, or 360° on a coordinate	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
is limited to the origin;	Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
	Math 1 M4 Lesson 15: Designs with Rigid Motions
	Math 1 M4 Lesson 16: Congruent Figures

A 4 4 4

Triangles

G.TR.2 The student will, given information in the form of a figure or statement, prove and justify two triangles are congruent using direct and indirect proofs, and solve problems involving measured attributes of congruent triangles.

Mathematics Standards of Learning for Virginia Public Schools

G.TR.2.a	Math 1 M4 Lesson 17: Congruent Triangles
Use definitions, postulates, and	Math 1 M4 Lesson 18: Side-Angle-Side
theorems (including Side-Side-Side (SSS);	Math 1 M4 Lesson 19: Angle-Angle and Side-Side-Side
(ASA); Angle-Angle-Side (SAS); Angle-Side Angle	Math 1 M4 Lesson 20: Angle-Side-Angle
Hypotenuse-Leg (HL)) to prove and justify	Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg
two triangles are congruent.	Supplemental material is necessary to address the Angle-Angle-Side theorem.

Triangles

G.TR.4 The student will model and solve problems, including those in context, involving trigonometry in right triangles and applications of the Pythagorean Theorem.

Mathematics Standards of Learning for Virginia Public Schools

Aligned Components of Eureka Math²

G.TR.4.a Determine whether a triangle formed with three given lengths is a right triangle.	8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse
G.TR.4.g Solve problems, including those in context, involving right triangles using the Pythagorean Theorem and its converse, including recognizing Pythagorean Triples.	Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically Supplemental material is necessary to address recognizing Pythagorean Triples.

Polygons and Circles

G.PC.1 The student will prove and justify theorems and properties of quadrilaterals, and verify and use properties of quadrilaterals to solve problems, including the relationships between the sides, angles, and diagonals.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
G.PC.1.a	Math 1 M2 Lesson 4: Proving Conditional Statements
Solve problems, using the properties specific to parallelograms, rectangles, rhombi, squares, isosceles trapezoids, and trapezoids.	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Supplemental material is necessary to address isosceles trapezoids.

for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
G.PC.1.b	Math 1 M2 Lesson 4: Proving Conditional Statements
Prove and justify that quadrilaterals have	Math 1 M2 Lesson 5: Proving Biconditional Statements
specific properties, using coordinate and algebraic methods, such as the slope formula, the distance formula, and the midpoint formula.	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
G.PC.1.d	Math 1 M4 Lesson 9: Rotations of the Plane
Use congruent segment, congruent angle, angle bisector, perpendicular line, and/or parallel line constructions to verify properties of quadrilaterals.	Math 1 M4 Lesson 24: Squares Inscribed in Circles Supplemental material is necessary to fully address this standard.

Algebra and Functions

AFDA.AF.1 The student will investigate, analyze, and compare linear, quadratic, and exponential function families, algebraically and graphically, using transformations.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
AFDA.AF.1.a	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Identify graphs and equations of parent	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
functions for linear, quadratic, and exponential function families.	Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	Supplemental material is necessary to address identifying the graph of $y = x$.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
AFDA.AF.1.b	Math 1 M3 Topic D: Transformations of Functions
Describe the transformation from the	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
parent function given the equation or the	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
graph of the function.	Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
AFDA.AF.1.c	Math 1 M5 Lesson 13: Calculating Interest
Determine and analyze whether a linear, quadratic, or exponential function best	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Lesson 20: World Population Prediction
those in context.	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
	Supplemental material is necessary to address whether a quadratic function best models a situation.
AFDA.AF.1.d	Math 1 M3 Topic D: Transformations of Functions
Write the equation of a linear,	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
quadratic, or exponential function, given a graph, using transformations of the parent function.	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math ²
AFDA.AF.1.e	Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Use a graphical or algebraic	Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
representation of a function to solve	Math 1 M3 Lesson 11: Comparing Functions
and alaebraically, when appropriate.	Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
	Math 1 M3 Lesson 15: Mars Curiosity Rover
AFDA.AF.1.f	Math 1 M3 Topic D: Transformations of Functions
Graph a function given the equation of a function, using transformations of the parent function. Use technology to verify transformations of functions.	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
	Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	Supplemental material is necessary to address verifying transformations of functions with technology.

Data Analysis

Mathematics Standards of Learning

AFDA.DA.1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on representing bivariate data in scatterplots and determining the curve of best fit using linear, quadratic, and exponential functions.

for Virginia Public Schools	Anglied Components of Eureka Math
AFDA.DA.1.a	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Formulate investigative questions that require the collection or acquisition of bivariate data, where exactly two of the variables are quantitative.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
AFDA.DA.1.b	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Collect or acquire bivariate data from a representative sample to answer an investigative question.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
AFDA.DA.1.c	Math 1 M2 Topic E: Numerical Data on Two Variables
Represent bivariate data with a scatterplot using technology and describe how the variables are related in terms of the given context.	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
AFDA.DA.1.d	Math 1 M2 Topic E: Numerical Data on Two Variables
Make predictions, decisions, and critical	Math 1 M5 Topic D: Comparing Linear and Exponential Models
judgments using data, scatterplots, or the	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
equation(s) of the mathematical model.	Math 1 M6 Lesson 3: Analyzing Paint Splatters

Mathematics Standards of Learning

PS.DS.1 The student will represent and analyze data visualizations of univariate quantitative data, including dot plots, stemplots, boxplots, cumulative frequency graphs, and histograms, to identify and describe patterns and departures from patterns, using central tendency, spread, clusters, gaps, and outliers, within the context of a problem.

for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
PS.DS.1.a	Math 1 M1 Topic D: Univariate Data
Create and interpret graphical displays of data, including dot plots, stemplots, boxplots, cumulative frequency graphs, and histograms, using appropriate technology.	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography Supplemental material is necessary to address stemplots and cumulative frequency graphs.
PS.DS.1.b	This standard is fully addressed by the lessons aligned to its subsections.
Examine the graphs within the context of the problem by analyzing:	
PS.DS.1.b.i	Math 1 M1 Topic D: Univariate Data
shape;	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
PS.DS.1.b.ii	Math 1 M1 Topic D: Univariate Data
measures of center;	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
PS.DS.1.b.iii	Math 1 M1 Topic D: Univariate Data
spread; and	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
PS.DS.1.b.iv	Math 1 M1 Topic D: Univariate Data
unusual features of the data (e.g., outliers, clusters, gaps).	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography

PS.DS.2 The student will represent and analyze numerical characteristics of univariate quantitative data sets to describe patterns and departures from patterns within the context of a problem.

Mathematics Standards of Learning for Virginia Public Schools

PS.DS.2.a Interpret measures of central tendency: mean, median, and mode.	Math 1 M1 Topic D: Univariate Data Supplemental material is necessary to address mode.
PS.DS.2.b Interpret measures of spread: range, interquartile range, variance, and standard deviation.	Math 1 M1 Topic D: Univariate Data Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
PS.DS.2.d Investigate and explain the influence of outliers on a univariate data set.	Math 1 M1 Topic D: Univariate Data
PS.DS.2.e Investigate and explain ways in which standard deviation addresses variability by examining the formula for standard deviation.	Math 1 M1 Lesson 20: Describing Variability in a Univariate Distribution with Standard Deviation

PS.DS.3 The student will represent, compare, and analyze distributions of two or more univariate quantitative data sets, numerically and graphically.

Mathematics Standards of Learning for Virginia Public Schools

PS.DS.3.a Create graphical displays of data, including back-to-back stemplots, parallel dot plots, parallel boxplots, and histograms, using appropriate technology.	Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M1 Lesson 21: Estimating Variability in Data Distributions Math 1 M1 Lesson 22: Comparing Distributions of Univariate Data Supplemental material is necessary to address back-to-back stemplots.
PS.DS.3.b Compare and contrast two or more univariate data sets, numerically and graphically, within the context of a problem by analyzing:	This standard is fully addressed by the lessons aligned to its subsections.
PS.DS.3.b.i shape;	Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M1 Lesson 21: Estimating Variability in Data Distributions Math 1 M1 Lesson 22: Comparing Distributions of Univariate Data
PS.DS.3.b.ii measures of center;	Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M1 Lesson 21: Estimating Variability in Data Distributions Math 1 M1 Lesson 22: Comparing Distributions of Univariate Data
PS.DS.3.b.iii measures of spread; and	Math 1 M1 Lesson 21: Estimating Variability in Data Distributions Math 1 M1 Lesson 22: Comparing Distributions of Univariate Data
PS.DS.3.b.iv unusual features of the data (e.g., clusters, gaps, outliers).	Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M1 Lesson 21: Estimating Variability in Data Distributions Math 1 M1 Lesson 22: Comparing Distributions of Univariate Data

Descriptive Statistics

PS.DS.4 The student will represent and analyze categorical data, using two-way tables and other graphical displays, to describe patterns and relationships.

Mathematics Standards of Learning for Virginia Public Schools

Aligned Components of Eureka Math²

PS.DS.4.c	Math 1 M6 Topic B: Modeling with Categorical Data
Generate and interpret a two-way table as a summary of the information obtained from two categorical variables.	
PS.DS.4.d	Math 1 M6 Topic B: Modeling with Categorical Data
Calculate and interpret marginal, relative, and conditional frequencies to analyze data in a two-way table within the context of a problem.	

Descriptive Statistics

PS.DS.5 The student will represent and analyze quantitative bivariate data with scatterplots to identify and describe the relationship between two variables.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of <i>Eureka Math</i> ²
PS.DS.5.a	Math 1 M2 Topic E: Numerical Data on Two Variables
Create scatterplots, using appropriate technology.	Math 1 M5 Lesson 21: A Closer Look at Populations Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math ²
PS.DS.5.b	Math 1 M2 Topic E: Numerical Data on Two Variables
Examine and interpret scatterplots in the	Math 1 M5 Lesson 21: A Closer Look at Populations
context of the problem by analyzing:	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
PS.DS.5.b.i	Math 1 M2 Topic E: Numerical Data on Two Variables
the form of relationship for linear and	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
nonlinear trends;	Math 1 M6 Lesson 3: Analyzing Paint Splatters
PS.DS.5.b.ii	Math 1 M2 Topic E: Numerical Data on Two Variables
the direction of the relationship for positive, negative, or no association;	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
PS.DS.5.b.iii	Math 1 M2 Topic E: Numerical Data on Two Variables
the strength of the relationship such as strong, moderate, or weak; and	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
PS.DS.5.b.iv	Math 1 M2 Topic E: Numerical Data on Two Variables
the presence of unusual features within the data (e.g., clusters, gaps, influential points, outliers).	

© 2024 Great Minds PBC | greatminds.org

PS.DS.6 The student will create and interpret a linear model using the least squares regression method to assess the relationship between two quantitative variables.

Mathematics Standards of Learning for Virginia Public Schools

PS.DS.6.a	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Create the least squares regression model using technology to interpret the contextual meaning of the slope and y-intercept.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
PS.DS.6.b	Math 1 M2 Lesson 27: Interpreting Correlation
Using technology, calculate and interpret	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
the correlation coefficient, <i>r</i> , within the context of a problem.	
PS.DS.6.d	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Use regression lines to make predictions, and identify the limitations of the predictions, such as extrapolation.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
	Math 1 M2 Lesson 27: Interpreting Correlation
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
PS.DS.6.e	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Calculate and interpret a residual to understand the error of a prediction.	Math 1 M2 Lesson 26: Analyzing Residuals
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters

Functional Relationships

MA.FR.3 The student will analyze sequences and finite series, and model and solve problems in context using sequences and series.

Mathematics Standards of Learning for Virginia Public Schools

MA.FR.3.b Derive the formulas associated with arithmetic and geometric sequences and series.	Math 1 M5 Topic A: Arithmetic and Geometric Sequences Supplemental material is necessary to address arithmetic and geometric series.
MA.FR.3.c Determine the <i>n</i> th term, a_n , for an arithmetic or geometric sequence.	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
MA.FR.3.e Model and solve problems in context, using sequences and series.	Math 1 M5 Topic A: Arithmetic and Geometric Sequences Supplemental material is necessary to address arithmetic and geometric series.