EUREKA MATH².

Algebra I | West Virginia College- and Career-Readiness Standards for Mathematics Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Habits of Mind	Aligned Components of Eureka Math ²
MHM1.	Lessons in every module engage students in mathematical habits
Make sense of problems and persevere in solving them.	of mind. These are indicated in margin notes included with every lesson.
MHM2.	Lessons in every module engage students in mathematical habits
Reason abstractly and quantitatively.	of mind. These are indicated in margin notes included with every lesson.
MHM3.	Lessons in every module engage students in mathematical habits
Construct viable arguments and critique the reasoning of others.	of mind. These are indicated in margin notes included with every lesson.
MHM4.	Lessons in every module engage students in mathematical habits
Model with mathematics.	of mind. These are indicated in margin notes included with every lesson.
MHM5.	Lessons in every module engage students in mathematical habits
Use appropriate tools strategically.	of mind. These are indicated in margin notes included with every lesson.
MHM6.	Lessons in every module engage students in mathematical habits
Attend to precision.	of mind. These are indicated in margin notes included with every lesson.
MHM7.	Lessons in every module engage students in mathematical habits
Look for and make use of structure.	of mind. These are indicated in margin notes included with every lesson.
MHM8.	Lessons in every module engage students in mathematical habits
Look for and express regularity in repeated reasoning.	of mind. These are indicated in margin notes included with every lesson.

Relationships between Quantities and Reasoning with Equations

Reason quantitatively and use units to solve problems.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.1	A1 M6 Lesson 5: Solar System Models
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
M.A1HS.2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
M.A1HS.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

Relationships between Quantities and Reasoning with Equations

Interpret the structure of expressions.

West Virginia College- and Career-Readiness Standards for Mathematics

Aligned Components of Eureka Math²

Tor Mathematics	
M.A1HS.4	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	
M.A1HS.4.a Interpret parts of an expression, such as terms, factors, and coefficients.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
M.A1HS.4.b Interpret complicated expressions by viewing one or more of their parts as a single entity.	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Relationships between Quantities and Reasoning with Equations

Create equations that describe numbers or relationships.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.5	A1 M1 Lesson 7: Printing Presses
Create equations and inequalities in one	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
variable and use them to solve problems. Include equations arising from linear and	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
quadratic functions, and simple rational	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
and exponential functions.	Supplementary material is needed to address equations and inequalities involving simple rational and exponential functions.
M.A1HS.6	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	Supplementary material is needed to address equations involving simple rational and exponential functions.
M.A1HS.7	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	A1 M1 Lesson 14: Solution Sets of Compound Statements
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M6 Lesson 5: Solar System Models

West Virginia College- and
Career-Readiness Standards
for MathematicsAligned Components of Eureka Math2M.A1HS.8A1 M1 Lesson 12: Rearranging FormulasRearrange formulas to highlight
a quantity of interest, using the same
reasoning as in solving equations.A1 M1 Lesson 12: Rearranging Formulas

Relationships between Quantities and Reasoning with Equations

Understand solving equations as a process of reasoning and explain the reasoning.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.9	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Relationships between Quantities and Reasoning with Equations

Solve equations and inequalities in one variable.

West Virginia College- and Career-Readiness Standards for Mathematics

Aligned Components of Eureka Math²

M.A1HS.10	A1 M1 Lesson 7: Printing Presses
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
	A1 M1 Lesson 9: Solving Linear Equations in One Variable
	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M1 Lesson 16: Solving Absolute Value Equations
	A1 M1 Lesson 17: Solving Absolute Value Inequalities

Linear and Exponential Relationships

a notation for radicals in terms of rational

Extend the properties of exponents to rational exponents.

West Virginia College- and
Career-Readiness Standards
for MathematicsAligned Components of Eureka Math2M.A1HS.11A1 M5 Lesson 9: Unit Fraction ExponentsExplain how the definition of the
meaning of rational exponents follows
from extending the properties of integer
exponents to those values, allowing forA1 M5 Lesson 10: Rational Exponents

exponents.

West Virginia College- and Career-Readiness Standards Aligned Components of Eureka Math² for Mathematics

M.A1HS.12	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents.	A1 M5 Lesson 10: Rational Exponents

Linear and Exponential Relationships

Solve systems of equations.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.13	A1 M2 Lesson 9: A New Way to Solve Systems
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	
M.A1HS.14	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations

Represent and solve equations and inequalities graphically.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.15 Recognize that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
M.A1HS.16 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential and logarithmic functions.	A1 M3 Lesson 10: Using Graphs to Solve Equations A1 M3 Lesson 15: The Absolute Value Function A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions
M.A1HS.17 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 14: Applications of Systems of Linear Inequalities A1 M6 Lesson 5: Solar System Models

Linear and Exponential Relationships

Understand the concept of a function and use function notation.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.18	A1 M3 Topic A: Functions and Their Graphs
Recognize that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	
M.A1HS.19	A1 M3 Lesson 1: The Definition of a Function
Use function notation, evaluate functions	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
for inputs in their domains and interpret statements that use function notation	A1 M3 Lesson 6: Representations of Functions
in terms of a context.	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 7: Sierpinski Triangle

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.20	A1 M5 Lesson 1: Exploring Patterns
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpret functions that arise in applications in terms of a context.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.21	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 9: Representing Functions from Verbal Descriptions A1 M3 Lesson 11: Comparing Functions A1 M3 Lesson 12: Mars Curiosity Rover A1 M3 Lesson 13: Modeling Elevation as a Function of Time

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²
M.A1HS.22	A1 M3 Lesson 3: The Graph of a Function
Relate the domain of a function to its graph and where applicable, to the quantitative relationship it describes.	A1 M3 Lesson 13: Modeling Elevation as a Function of Time A1 M3 Lesson 16: Step Functions
M.A1HS.23	A1 M5 Lesson 19: Analyzing Exponential Growth
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A1 M5 Lesson 20: Comparing Growth of Functions A1 M5 Lesson 24: Modeling an Invasive Species Population

Analyze functions using different representations.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.24	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
M.A1HS.24.a	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph linear and quadratic functions and show intercepts, maxima, and minima.	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations A1 M3 Lesson 6: Representations of Functions

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.24.b	A1 M5 Lesson 11: Graphing Exponential Functions
Graph exponential and logarithmic functions, showing intercepts and end behavior and trigonometric functions, showing period, midline and amplitude.	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
M.A1HS.25	A1 M3 Lesson 11: Comparing Functions
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	

Build a function that models a relationship between two quantities.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.26	This standard is fully addressed by the lessons aligned to its subsections.
Write a function that describes a relationship between two quantities.	

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.26.a	A1 M3 Lesson 17: Piecewise Linear Functions in Context
Determine an explicit expression,	A1 M5 Topic A: Arithmetic and Geometric Sequences
a recursive process, or steps for calculation from a context.	A1 M5 Lesson 8: Exponential Functions
calculation from a context.	A1 M5 Lesson 15: Calculating Interest
	A1 M6 Lesson 4: The Deal
	A1 M6 Lesson 6: Designing a Fundraiser
M.A1HS.26.b	A1 M6 Lesson 4: The Deal
Combine standard function types using	A1 M6 Lesson 5: Solar System Models
arithmetic operations.	A1 M6 Lesson 6: Designing a Fundraiser
M.A1HS.27	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
	A1 M5 Lesson 7: Sierpinski Triangle

Linear and Exponential Relationships

Build new functions from existing functions.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²
M.A1HS.28	A1 M3 Topic D: Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear and Exponential Relationships

Construct and compare linear, quadratic, and exponential models and solve problems.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²
M.A1HS.29	A1 M5 Lesson 15: Calculating Interest
Distinguish between situations that can be modeled with linear functions and with exponential functions.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Topic A: Modeling Bivariate Quantitative Data

West Virginia College- and Career-Readiness Standards for Mathematics

Aligned Components of Eureka Math²

M.A1HS.29.a Prove that linear functions grow by equal differences over equal intervals; exponential functions grow by equal factors over equal intervals.	A1 M5 Lesson 19: Analyzing Exponential Growth
M.A1HS.29.b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	A1 M5 Lesson 15: Calculating Interest A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 21: World Population Prediction A1 M5 Lesson 22: A Closer Look at Populations A1 M5 Lesson 24: Modeling an Invasive Species Population
M.A1HS.29.c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	A1 M5 Lesson 15: Calculating Interest A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 21: World Population Prediction A1 M5 Lesson 22: A Closer Look at Populations A1 M5 Lesson 24: Modeling an Invasive Species Population
M.A1HS.30 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship or two input-output pairs (include reading these from a table).	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Topic B: Developing Models for Contexts

West Virginia College- and
Career-Readiness Standards
for MathematicsAligned Components of Eureka Math2M.A1HS.31A1 M5 Lesson 20: Comparing Growth of FunctionsObserve using graphs and tables that
a quantity increasing exponentially
eventually exceeds a quantity increasing
linearly, quadratically, or (more generally)A1 M5 Lesson 20: Comparing Growth of Functions

Linear and Exponential Relationships

as a polynomial function.

Interpret expressions for functions in terms of the situation they model.

West Virginia College- and
Career-Readiness Standards
for MathematicsAligned Components of Eureka Math2M.A1HS.32A1 M5 Lesson 18: Modeling PopulationsInterpret the parameters in a linear
or exponential function in terms of
a context.A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population

Descriptive Statistics

Summarize, represent, and interpret data on a single count or measurement variable.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.33	A1 M1 Lesson 18: Distributions and Their Shapes
Represent data with plots on the real	A1 M1 Lesson 19: Describing the Center of a Distribution
number line (dot plots, histograms, and box plots).	A1 M1 Lesson 20: Using Center to Compare Data Distributions
M.A1HS.34	A1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape	
of the data distribution to compare center (median, mean) and spread	
(interquartile range, standard deviation)	
of two or more different data sets.	
M.A1HS.35	A1 M1 Topic D: Univariate Data
Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	

Descriptive Statistics

Summarize, represent, and interpret data on two categorical and quantitative variables.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.36	A1 M2 Topic D: Categorical Data on Two Variables
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal and conditional relative frequencies). Recognize possible associations and trends in the data.	
M.A1HS.37	A1 M2 Lesson 15: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
M.A1HS.37.a	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.	A1 M2 Lesson 17: Modeling Relationships with a Line A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M6 Topic A: Modeling Bivariate Quantitative Data
M.A1HS.37.b	A1 M2 Lesson 18: Calculating and Analyzing Residuals
Informally assess the fit of a function by plotting and analyzing residuals.	A1 M2 Lesson 19: Analyzing Residuals A1 M6 Topic A: Modeling Bivariate Quantitative Data

West Virginia College- and
Career-Readiness Standards
for MathematicsAligned Components of Eureka Math2M.A1HS.37.cA1 M2 Lesson 17: Modeling Relationships with a LineFit a linear function for scatter plots that
suggest a linear association.A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 20: Interpreting Correlation
A1 M6 Topic A: Modeling Bivariate Quantitative Data

Descriptive Statistics

Interpret linear models.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.38	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
M.A1HS.39	A1 M2 Lesson 20: Interpreting Correlation
Compute (using technology) and interpret the correlation coefficient of a linear fit.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
M.A1HS.40	A1 M2 Lesson 20: Interpreting Correlation
Distinguish between correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Expressions and Equations

Interpret the structure of equations.

West Virginia College- and Career-Readiness Standards for Mathematics

Aligned Components of Eureka Math²

M.A1HS.41 Interpret expressions that represent a quantity in terms of its context.	This standard is fully addressed by the lessons aligned to its subsections.
M.A1HS.41.a Interpret parts of an expression, such as terms, factors, and coefficients.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
M.A1HS.41.b Interpret complicated expressions by viewing one or more of their parts as a single entity.	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
M.A1HS.42 Use the structure of an expression to identify ways to rewrite it.	A1 M1 Lesson 1: The Growing Pattern of Ducks A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties A1 M1 Lesson 3: Polynomial Expressions A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Topic B: Factoring A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 14: Solving the Quadratic Formula A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Expressions and Equations

Write expressions in equivalent forms to solve problems.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.43	This standard is fully addressed by the lessons aligned to its subsections.
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	
M.A1HS.43.a	A1 M4 Lesson 10: Zeros of Functions
Factor a quadratic expression to reveal	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
the zeros of the function it defines.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
M.A1HS.43.b	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
M.A1HS.43.c	A1 M5 Lesson 11: Graphing Exponential Functions
Use the properties of exponents to	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
transform expressions for exponential functions.	A1 M5 Lesson 18: Modeling Populations

Expressions and Equations

Perform arithmetic operations on polynomials.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²
M.A1HS.44	A1 M1 Lesson 3: Polynomial Expressions
Recognize that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities

Expressions and Equations

Create equations that describe numbers or relationships.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.45	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²
M.A1HS.46	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
M.A1HS.47	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	

Expressions and Equations

Solve equations and inequalities in one variable.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²
M.A1HS.48	This standard is fully addressed by the lessons aligned to its subsections.
Solve quadratic equations in one variable.	

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.48.a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = a$ that has the same	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula
form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.	
M.A1HS.48.b Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 16: Solving Quadratic Equations A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Expressions and Equations

Solve systems of equations.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.49	A1 M4 Lesson 24: Another Look at Systems of Equations
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	

Quadratic Functions and Modeling

Use properties of rational and irrational numbers.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.50	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	A1 M4 Lesson 17: Rewriting Square Roots

Quadratic Functions and Modeling

Interpret functions that arise in applications in terms of a context.

West Virginia College- and Career-Readiness Standards for Mathematics

Aligned Components of Eureka Math²

M.A1HS.51	A1 M4 Lesson 1: Falling Objects
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	A1 M4 Lesson 2: Projectile Motion A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area
M.A1HS.52 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	A1 M4 Lesson 2: Projectile Motion A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
M.A1HS.53 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A1 M4 Lesson 1: Falling Objects A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

Quadratic Functions and Modeling

Analyze functions using different representations.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.54	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
M.A1HS.54.a	A1 M4 Lesson 4: Graphs of Quadratic Functions
Graph linear and quadratic functions and	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
show intercepts, maxima, and minima.	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
M.A1HS.54.b	A1 M3 Topic C: Piecewise-Defined Linear Functions
Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	A1 M3 Lesson 19: Building New Functions—Translations
	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
	Supplemental material is needed to address graphing square root and cube root functions.
M.A1HS.55	This standard is fully addressed by the lessons aligned to its subsections.
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.55.a	A1 M4 Lesson 10: Zeros of Functions
Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
M.A1HS.55.b Use the properties of exponents to interpret expressions for exponential functions.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations
M.A1HS.56 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Quadratic Functions and Modeling

Build a function that models a relationship between two quantities.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of Eureka Math ²

M.A1HS.57 Write a function that describes a relationship between two quantities.	This standard is fully addressed by the lessons aligned to its subsections.
M.A1HS.57.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter
M.A1HS.57.b Combine standard function types using arithmetic operations.	A1 M6 Lesson 7: World Record Doughnut

Quadratic Functions and Modeling

Build new functions from existing functions.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.58	A1 M4 Lesson 20: Art with Transformations
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	
M.A1HS.59	Supplemental material is necessary to address this standard.
Find inverse functions. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse.	

Quadratic Functions and Modeling

Construct and compare linear, quadratic and exponential models and solve problems.

West Virginia College- and Career-Readiness Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
M.A1HS.60	A1 M5 Lesson 20: Comparing Growth of Functions
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	