7-8 | North Dakota Mathematics K-12 Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Math Attributes

Aligned Components of Eureka Math ${ }^{2}$

6-8.MA.P
Learners can analyze information and formulate a flexible, systematic
plan to problem-solve authentic situations and reflect on the
reasonableness of the solution, making revisions when necessary.

6-8.MA.C

Learners can create connections within and across concepts and provide examples of how they relate to other learning and ideas using supporting evidence.

6-8.MA.R

Learners can reason logically, citing evidence to evaluate and explain what they see, think, and conclude through exploration and justification.

Lessons in every module engage students in math attributes. These are indicated in margin notes included with every lesson.

Lessons in every module engage students in math attributes. These are indicated in margin notes included with every lesson.

Lessons in every module engage students in math attributes. These are indicated in margin notes included with every lesson.

Number and Operations: Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.
7.NO.NS Number Systems: Learners will expand their knowledge of the number system to create connections and solve problems within and across concepts.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

| 7.NO.NS. 1 |
| :--- | :--- |
| Describe the absolute value |
| of a number as its distance from |
| zero on a number line. |
| 7.NO.NS. 2 | | Recognize common fractions and decimal |
| :--- |
| equivalencies up to a denominator of 10. |
| Convert a rational number to a decimal |
| using technology. |

Number and Operations: Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.
7.NO.O Operations: Learners will expand their computational fluency to create connections and solve problems within and across concepts.

7.NO.O. 1

Add, subtract, multiply, and divide integers using visual models and properties of operations in multi-step problems, including authentic problems.

```
7-8 M1 Lesson 1: Adding Integers and Rational Numbers
7-8 M1 Lesson 3: Finding Distances to Find Differences
7-8 M1 Lesson 4: Subtracting Integers
7-8 M1 Lesson 5: Subtracting Rational Numbers
```

North Dakota Mathematics
K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.NO.O.1 continued	$7-8$ M1 Lesson 6: Multiplying Integers and Rational Numbers $7-8$ M1 Lesson 8: Dividing Integers and Rational Numbers
7.NO.O.2	$7-8$ M1 Lesson 1: Adding Integers and Rational Numbers
Add, subtract, multiply, and divide nonnegative fractions in multi-step problems, including authentic problems.	$7-8$ M1 Lesson 5: Subtracting Rational Numbers $7-8$ M1 Lesson 6: Multiplying Integers and Rational Numbers
$7-8$ M1 Lesson 8: Dividing Integers and Rational Numbers	

Algebraic Reasoning: Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
7.AR.RP Ratios and Proportional Relationships: Learners will use ratios, rates, and proportions to model relationships and solve problems.

North Dakota Mathematics
K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.AR.RP. 1

Calculate unit rates associated with ratios of rational numbers, including ratios of lengths, areas, and other quantities measured in like or different units.

[^0]
North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.AR.RP. 2

Analyze the relationship between the dependent and independent variables of a proportional relationship using graphs and tables. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, k)$ where k is the unit rate.

7.AR.RP. 3

Identify the constant of proportionality in tables, graphs, equations, diagrams, and descriptions of proportional relationships. Represent proportional relationships by an equation of the form $y=k x$, where k is the constant of proportionality, and describe the meaning of each variable (y, k, x) in the context of the situation.

7.AR.RP. 4

Use proportional relationships to solve multi-step problems involving ratios, percents, and scale drawings of geometric figures, including authentic problems.
6 M4 Topic E: Relating Variables by Using Tables, Graphs, and Equations
7-8 M2 Lesson 12: An Experiment with Ratios and Rates
7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
7-8 M2 Lesson 19: Proportional Reasoning and Percents
7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
7-8 M2 Lesson 16: Applying Proportional Reasoning
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Lesson 19: Proportional Reasoning and Percents

7-8 M2 Lesson 16: Applying Proportional Reasoning
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Topic D: Percents and Proportional Relationships
7-8 M3 Topic D: Scale Drawings and Dilations

Algebraic Reasoning: Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
7.AR.EE Expressions and Equations: Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adapting approaches in novel situations.

North Dakota Mathematics
K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.AR.EE. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions involving variables, integers, and/or nonnegative fractions and decimals with an emphasis on writing equivalent expressions.

7.AR.EE. 2

Write and solve equations of the form $p x+q=r$ and $p(x+q)=r$, including authentic problems.

7.AR.EE. 3

Write and solve one- or two-step inequalities where coefficients and solutions are integers and/or nonnegative fractions and decimals, including authentic problems. Graph the solution set of the inequality and interpret it in the context of the problem.

7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
7-8 M2 Lesson 21: Discount, Markup, Sales Tax, and Tip
7-8 M2 Lesson 22: Percent Increase and Percent Decrease
7-8 M2 Lesson 1: Finding Unknown Angle Measures
7-8 M2 Lesson 3: Solving Equations
7-8 M2 Lesson 4: Using Equations to Solve Inequalities
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities
7-8 M2 Lesson 4: Using Equations to Solve Inequalities
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities
7-8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Lesson 23: What Is the Best Deal?

7-8 M2 Lesson 3: Solving Equations
7-8 M2 Lesson 4: Using Equations to Solve Inequalities
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities
7-8 M2 Lesson 4: Using Equations to Solve Inequalities
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities
7-8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Lesson 23: What Is the Best Deal?

Geometry and Measurement: Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.
7.GM.AV Area and Volume: Learners will use visualization and spatial reasoning to solve authentic and mathematical problems involving area, surface area, and volume of geometric figures.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.GM.AV. 1

Describe the relationship between the circumference and diameter of a circle (pi). Apply given formulas to calculate the area and circumference of a circle, including authentic problems.

7.GM.AV. 2

Calculate areas of polygons by composing and/or decomposing them into rectangles and triangles, including authentic problems. Solve problems involving the surface area of prisms and right pyramids using nets, including authentic problems.

7.GM.AV. 3

Solve problems involving the volume of prisms and composite solids, including authentic problems.

```
7-8 M3 Lesson 3: Exploring and Constructing Circles
7-8 M3 Lesson 4: Area and Circumference of a Circle
7-8 M3 Lesson 5: Area and Circumference of Circular Regions
7-8 M3 Lesson 6: Watering a Lawn
```

7-8 M5 Lesson 11: Surface Areas of Prisms and Pyramids
7-8 M5 Lesson 16: Volume of Prisms
7-8 M5 Lesson 18: Designing a Fish Tank
7-8 M5 Lesson 21: Volume of Composite Solids

```
7-8 M5 Lesson 11: Surface Areas of Prisms and Pyramids
7-8 M5 Lesson 16: Volume of Prisms
7-8 M5 Lesson 18: Designing a Fish Tank
7-8 M5 Lesson 21: Volume of Composite Solids
```

Geometry and Measurement: Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.
7.GM.GF Geometric Figures: Learners will use visualization, spatial reasoning, and geometric modeling to investigate the characteristics of figures, perform transformations, and construct logical arguments.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.GM.GF. 1

Draw triangles from given conditions using appropriate tools. Defend whether a unique triangle, multiple triangles, or no triangle can be constructed when given three measures of angles or sides.

7.GM.GF. 2

Describe the following angle-pair relationships: supplementary angles, complementary angles, vertical angles, and adjacent angles. Solve for an unknown angle in a figure by applying facts about these angles.

7-8 M3 Lesson 1: Sketching and Constructing Geometric Figures
7-8 M3 Lesson 2: Conditions of Unique Triangles

7-8 M2 Lesson 1: Finding Unknown Angle Measures
7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
7-8 M2 Lesson 7: Solving Multi-Step Equations

Data, Probability, and Statistics: Learners will ask and answer questions by collecting, organizing, and displaying relevant data, drawing inferences and conclusions, making predictions, and understanding and applying basic concepts of probability.
7.DPS.D Data Analysis: Learners will ask and answer questions by collecting, organizing, and displaying relevant data, drawing inferences and conclusions, and making predictions.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.DPS.D. 1

Identify the strengths and weaknesses of a population sample including bias in the process of the data collection.

7.DPS.D. 2

Analyze and draw inferences about a population using single and multiple random samples by using given measures of center and variability for the numerical data set.

```
7-8 M6 Lesson 10: Populations and Samples
7-8 M6 Lesson 11: Selecting a Sample
7-8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean
```

7-8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean
7-8 M6 Lesson 13: Sampling Variability and the Effect of Sample Size
7-8 M6 Lesson 14: Sampling Variability When Estimating a Population Proportion
7-8 M6 Topic D: Comparing Populations

Data, Probability, and Statistics: Learners will ask and answer questions by collecting, organizing, and displaying relevant data, drawing inferences and conclusions, making predictions, and understanding and applying basic concepts of probability.
7.DPS.P Probability: Learners will understand and apply basic concepts of probability.

North Dakota Mathematics
K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.DPS.P. 1

Develop a probability model to find probabilities of theoretical events and contrast probabilities from an experimental model.

```
7-8 M6 Lesson 1: What Is Probability?
7-8 M6 Lesson 2: Outcomes of Chance Experiments
7-8 M6 Lesson 3: Theoretical Probability
7-8 M6 Lesson 6: The Law of Large Numbers
7-8 M6 Lesson 7: Picking Blue
```


North Dakota Mathematics

K-12 Standards

7.DPS.P. 2

Develop a probability model to find theoretical probabilities of independent compound events.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M6 Lesson 4: Multistage Experiments
7-8 M6 Lesson 8: Probability Simulations
7-8 M6 Lesson 9: Simulations with Random Number Tables

Number and Operations: Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.
8.NO.NS Number Systems: Learners will expand their knowledge of the number system to create connections and solve problems within and across concepts.

North Dakota Mathematics \quad Aligned Components of Eureka Math ${ }^{2}$ K-12 Standards
8.NO.NS. 1
Compare and classify real numbers within
the real number system.

8.NO.NS. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them on a number line diagram, and estimate the value of irrational expressions involving one operation.

8 M1 Lesson 22: Familiar and Not So Familiar Numbers

7-8 M1 Lesson 21: Approximating Values of Roots
7-8 M1 Lesson 22: Rational and Irrational Numbers

North Dakota Mathematics

K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.NO.NS. 3

Use scientific notation to represent very large or very small quantities. Interpret scientific notation generated by technology. Compare and order numbers in both scientific and standard notation.

7-8 M1 Lesson 10: Large and Small Positive Numbers
7-8 M1 Lesson 14: Writing Very Large and Very Small Numbers in Scientific Notation
7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation
7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation
7-8 M1 Lesson 17: Get to the Point

Number and Operations: Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.
8.NO.O Operations: Learners will expand their computational fluency to create connections and solve problems within and across concepts.

North Dakota Mathematics
K-12 Standards

8.NO.O.1

Evaluate mentally the square roots of perfect squares up to 225 and cube roots of perfect cubes up to 1,000 .

8.NO.O. 2

Add, subtract, multiply, and divide rational numbers using strategies or procedures.

Aligned Components of Eureka Math ${ }^{2}$

Algebraic Reasoning: Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
8.AR.EE Expressions and Equations: Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adapting approaches in novel situations.

North Dakota Mathematics
K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.AR.EE. 1

Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.

8.AR.EE. 2

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a nonnegative rational number.

8.AR.EE. 3

Explain the characteristics of a linear relationship, including identifying the slope and y-intercept in tables, graphs, equations, and descriptions.

7-8 M1 Lesson 11: Products of Exponential Expressions with Positive Whole-Number Exponents
7-8 M1 Lesson 12: More Properties of Exponents
7-8 M1 Lesson 13: Making Sense of Integer Exponents
7-8 M1 Lesson 18: Solving Equations with Squares and Cubes
7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M1 Lesson 20: Using the Pythagorean Theorem
7-8 M1 Lesson 21: Approximating Values of Roots
7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes
7-8 M4 Lesson 1: Solutions to Linear Equations in Two Variables
7-8 M4 Lesson 2: The Graph of a Linear Equation in Two Variables
7-8 M4 Lesson 3: Lines with Special Characteristics
7-8 M4 Lesson 8: Slope-Intercept Form of the Equation of a Line
7-8 M4 Lesson 9: Point-Slope Form of the Equation of a Line
7-8 M4 Lesson 10: Comparing Equations in Different Forms
7-8 M4 Lesson 12: Identifying Solutions

7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M1 Lesson 20: Using the Pythagorean Theorem
7-8 M1 Lesson 21: Approximating Values of Roots

7-8 M4 Lesson 1: Solutions to Linear Equations in Two Variables
7-8 M4 Lesson 2: The Graph of a Linear Equation in Two Variables
7-8 M4 Lesson 3: Lines with Special Characteristics
7-8 M4 Lesson 8: Slope-Intercept Form of the Equation of a Line
7-8 M4 Lesson 9: Point-Slope Form of the Equation of a Line

7-8 M4 Lesson 12: Identifying Solutions

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math²

8.AR.EE. 4

Represent linear relationships using tables, graphs, equations, and descriptions when given a relationship in one of these forms.

8.AR.EE. 5

Solve linear equations with rational number coefficients and variables on both sides, including equations that require using the distributive property and/or combining and collecting like terms. Interpret the number of solutions. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions.

8.AR.EE. 6

Read, write, and evaluate numerical and algebraic expressions including expressions involving absolute value. Solve and graph equations of the form $|x|=r$ where r is a nonnegative rational number.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.AR.EE. 7

Solve and graph inequalities in one variable with rational number coefficients and variables on both sides, including inequalities that require using the distributive property and/or combining like terms.

8.AR.EE. 8

Graph linear inequalities in two variables on a coordinate plane. Interpret the possible solutions in the context of authentic problems.
A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
A1 M6 Lesson 6: Designing a Fundraiser

Algebraic Reasoning: Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
8.AR.F Functions: Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.AR.F. 1

Defend whether a relation is a function from various representations using appropriate function language.

[^1]
North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.AR.F. 2

Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).

8.AR.F. 3

Compare and contrast linear and nonlinear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).

8.AR.F. 4

Model a linear function between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.

8.AR.F. 5

Describe qualitatively the functional relationship between two quantities by analyzing a graph including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.

7-8 M4 Lesson 4: Comparing Proportional Relationships

7-8 M4 Lesson 5: Proportional Relationships and Slope
7-8 M5 Lesson 6: Linear Functions and Rate of Change
7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value
7-8 M5 Lesson 23: Applications of Volume
7-8 M5 Lesson 9: Increasing and Decreasing Functions
7-8 M5 Lesson 10: Graphs of Nonlinear Functions

Geometry and Measurement: Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.
8.GM.AV Area and Volume: Learners will use visualization and spatial reasoning to solve problems involving area, surface area, and volume of geometric figures.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.AV. 1

Apply given formulas to solve problems involving the volume of cones,
cylinders, and spheres, including
authentic problems.

Geometry and Measurement: Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.
8.GM.GF Geometric Figures: Learners will use visualization, spatial reasoning, and geometric modeling to investigate the characteristics of figures, perform transformations, and construct logical arguments.

8.GM.GF. 1

Perform single transformations to a figure on the coordinate plane and determine whether the figures are congruent or similar.

```
7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane
7-8 M3 Lesson 22: Dilations
7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
7-8 M3 Lesson 24: Figures and Dilations
7-8 M3 Lesson 25: The Shadowy Hand
7-8 M3 Lesson 26: Dilations on the Coordinate Plane
```


North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.GF. 2

Describe the characteristics of transformations on the coordinate plane using transformation language.

8.GM.GF. 3

Name the type of transformation(s) needed to map a pre-image to its image.

8.GM.GF. 4

Describe the following angle-pair relationships: interior and exterior angles of triangles and angles formed when a transversal cuts parallel lines or intersecting lines. Solve for an unknown angle in a figure by applying facts about these angles.

8.GM.GF. 5

Describe the relationship between the leg lengths and the hypotenuse length of a right triangle. Determine whether a triangle is a right triangle using this relationship.
7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane
7-8 M3 Lesson 22: Dilations
7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
7-8 M3 Lesson 24: Figures and Dilations
7-8 M3 Lesson 25: The Shadowy Hand
7-8 M3 Lesson 26: Dilations on the Coordinate Plane
7-8 M3 Lesson 10: Sequencing the Rigid Motions
7-8 M3 Lesson 11: Showing Figures Are Congruent
7-8 M3 Lesson 12: Lines Cut by a Transversal
7-8 M3 Lesson 12: Lines Cut by a Transversal
7-8 M3 Lesson 13: Angle Sum of a Triangle
7-8 M3 Lesson 14: Exterior Angles of Triangles
7-8 M3 Lesson 28: Exploring Angles in Similar Triangles
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
7-8
7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem
7-8 M3 Lesson 17: Applications of the Pythagorean Theorem
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
7-8 M5 Lesson 19: Volumes of Pyramids and Cones
7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane
7-8 M3 Lesson 22: Dilations
7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
7-8 M3 Lesson 24: Figures and Dilations
7-8 M3 Lesson 25: The Shadowy Hand
7-8 M3 Lesson 26: Dilations on the Coordinate Plane
7-8 M3 Lesson 10: Sequencing the Rigid Motions
7-8 M3 Lesson 11: Showing Figures Are Congruent
7-8 M3 Lesson 12: Lines Cut by a Transversal
7-8 M3 Lesson 12: Lines Cut by a Transversal
7-8 M3 Lesson 13: Angle Sum of a Triangle
7-8 M3 Lesson 14: Exterior Angles of Triangles
7-8 M3 Lesson 28: Exploring Angles in Similar Triangles
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem
7-8 M3 Lesson 17: Applications of the Pythagorean Theorem
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
7-8 M5 Lesson 19: Volumes of Pyramids and Cones

North Dakota Mathematics

K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.GF. 6

Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in two and three dimensions on and off a coordinate plane, including authentic problems.

```
7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem
7-8 M3 Lesson 17: Applications of the Pythagorean Theorem
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
7-8 M5 Lesson 19: Volumes of Pyramids and Cones
```

Data, Probability, and Statistics: Learners will ask and answer questions by collecting, organizing, and displaying relevant data, drawing inferences and conclusions, making predictions, and understanding and applying basic concepts of probability.
8.DPS.D Data Analysis: Learners will ask and answer questions by collecting, organizing, and displaying relevant data, drawing inferences and conclusions, and making predictions.

North Dakota Mathematics
 K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.DPS.D. 1

Interpret scatter plots for bivariate measurement data to investigate patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8.DPS.D. 2

Draw an informal trend line on a given scatter plot with a linear association and justify its fit by describing the closeness of the data points to the line.

7-8 M6 Lesson 18: Scatter Plots
7-8 M6 Lesson 19: Patterns in Scatter Plots

[^2]
North Dakota Mathematics

K-12 Standards

Aligned Components of Eureka Math ${ }^{2}$

8.DPS.D. 3

Solve authentic problems in the context of bivariate measurement data by interpreting the slope and intercept(s) and making predictions using a linear model.
8.DPS.D. 4

Construct and interpret a two-way table summarizing bivariate categorical data collected from the same subjects.

7-8 M6 Lesson 20: Informally Fitting a Line to Data
7-8 M6 Lesson 21: Linear Models

7-8 M6 Topic F: Bivariate Categorical Data

[^0]: 7-8 M2 Lesson 12: An Experiment with Ratios and Rates
 7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships

[^1]: 7-8 M5 Lesson 1: Motion and Speed
 7-8 M5 Lesson 2: Definition of a Function
 7-8 M5 Lesson 4: More Examples of Functions
 7-8 M5 Lesson 5: Graphs of Functions and Equations

[^2]: 7-8 M6 Lesson 20: Informally Fitting a Line to Data
 7-8 M6 Lesson 21: Linear Models

