Grade 2 | New York State Next Generation Mathematics Learning Standards Correlation to Eureka Math ${ }^{2 ®}$ New York Next Gen

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$ New York Next Gen, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ New York Next Gen carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ New York Next Gen employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ New York Next Gen incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² New York Next Gen teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ New York Next Gen add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Operations and Algebraic Thinking

Represent and solve problems involving addition and subtraction.

New York Next Generation
Mathematics Learning Standards

Aligned Components

NY-2.OA.1a

Use addition and subtraction within 100 to solve one-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions.

2 M1 Lesson 22: Use counting strategies to solve add to with change unknown word problems.
2 M2 Lesson 7: Solve word problems by using simplifying strategies for addition.
2 M2 Lesson 13: Represent and solve take from word problems
2 M2 Lesson 19: Solve word problems with simplifying strategies for subtraction
2 M2 Lesson 26: Solve add to and take from with start unknown word problems.
2 M4 Lesson 4: Represent and solve compare with bigger unknown word problems.
2 M4 Lesson 22: Solve compare with smaller unknown word problems.
2 M6 Lesson 1: Compose equal groups and write repeated addition equations.
2 M6 Lesson 4: Represent equal groups with a tape diagram.
2 M6 Lesson 17: Solve word problems that involve equal groups and arrays

2 M2 Lesson 27: Solve two-step word problems within 100.
2 M4 Lesson 3: Solve multi-step word problems and reason about equal expressions.
2 M4 Lesson 23: Solve two-step addition and subtraction word problems.

Operations and Algebraic Thinking

Add and subtract within 20.

New York Next Generation
Mathematics Learning Standards

NY-2.OA.2a

Fluently add and subtract within 20 using mental strategies. Strategies could include:

Aligned Components

could include.	2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2. 2 M4 Lesson 10: Choose and defend efficient solution strategies for addition. 2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers. 2 M4 Topic D: Strategies for Decomposing Tens and Hundreds Within 1,000
NY-2.OA.2a.i counting on;	Supplemental material is necessary to address this standard.
NY-2.OA.2a.ii making ten;	Supplemental material is necessary to address this standard.
NY-2.OA.2a.iii decomposing a number leading to a ten;	Supplemental material is necessary to address this standard.
NY-2.OA.2a.iv using the relationship between addition and subtraction; and	Supplemental material is necessary to address this standard.
NY-2.OA.2a.v creating equivalent but easier or known sums.	Supplemental material is necessary to address this standard.

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.OA.2b

Know from memory all sums within 20 of two one-digit numbers.

2 M4 Lesson 7: Use concrete models to add and relate them to written recordings.
2 M4 Lesson 8: Use place value drawings to represent addition and relate them to written recordings, part 1.

2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2.
2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers.
2 M4 Topic D: Strategies for Decomposing Tens and Hundreds Within 1,000

Operations and Algebraic Thinking

Work with equal groups of objects to gain foundations for multiplication.

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.OA.3a	2 M6 Lesson 14: Relate doubles to even numbers and write equations to express the sums.
Determine whether a group of objects (up to 20) has an odd or even number of members.	2 M6 Lesson 15: Pair objects and skip-count to determine whether a number is even or odd.
NY-2.OA.3b	2 M6 Lesson 16: Use rectangular arrays to investigate combinations of even and odd numbers.
Write an equation to express an even number as a sum of two equal addends.	2 M6 Topic B: Arrays and Equal Groups

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.OA. 4

Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns. Write an equation to express the total as a sum of equal addends.

```
2 M6 Topic A: Count and Problem Solve with Equal Groups
2 M6 Topic B: Arrays and Equal Groups
2 M6 Topic C: Rectangular Arrays as a Foundation for Multiplication and Division
2 M6 Lesson 17: Solve word problems that involve equal groups and arrays.
```


Number and Operations in Base Ten

 Understand place value.
New York Next Generation

 Mathematics Learning Standards
Aligned Components

NY-2.NBT. 1

Understand that the digits of a three-digit number represent amounts of hundreds, tens, and ones.

[^0]
New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.NBT.1a

Understand 100 can be thought of as a bundle of ten tens, called a "hundred."

2 M1 Lesson 20: Count and bundle ones, tens, and hundreds to 1,000.
2 M1 Lesson 23: Organize, count, and record a collection of objects.
2 M1 Lesson 28: Use place value understanding to count and exchange $\$ 1, \$ 10$, and $\$ 100$ bills.
2 M1 Lesson 30: Determine how many $\$ 10$ bills are equal to $\$ 1,000$.
2 M1 Lesson 32: Exchange 10 ones for 1 ten, 10 tens for 1 hundred, and 10 hundreds for 1 thousand.
2 M1 Lesson 34: Problem solve in situations with more than 9 ones or 9 tens.

2 M1 Lesson 24: Count up to 1,000 by using place value units.
2 M1 Lesson 25: Write three-digit numbers in unit form and show the value that each digit represents.
2 M1 Lesson 27: Read, write, and relate base-ten numbers in all forms.
2 M1 Lesson 28: Use place value understanding to count and exchange $\$ 1, \$ 10$, and $\$ 100$ bills.
2 M1 Lesson 30: Determine how many $\$ 10$ bills are equal to $\$ 1,000$.
2 M1 Topic H: Compose and Decompose with Place Value Disks

NY-2.NBT. 2

Count within 1,000; skip-count by 5s, 10 s , and 100 s .

2 M1 Lesson 21: Count efficiently within 1,000 by using ones, tens, and hundreds.
2 M1 Lesson 22: Use counting strategies to solve add to with change unknown word problems.
2 M1 Lesson 23: Organize, count, and record a collection of objects.
2 M1 Lesson 24: Count up to 1,000 by using place value units.
2 M1 Lesson 29: Count by $\$ 1, \$ 10$, and $\$ 100$.
2 M1 Lesson 30: Determine how many $\$ 10$ bills are equal to $\$ 1,000$.
2 M1 Lesson 37: Organize, count, represent, and compare a collection of objects.
2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.
3 M1 Lesson 1: Organize, count, and represent a collection of objects.

2 | New York State Next Generation Mathematics Learning Standards Correlation to Eureka Math ${ }^{2}$ New York Next Gen

New York Next Generation Mathematics Learning Standards	Aligned Components
NY-2.NBT. 3 Read and write numbers to 1,000 using base-ten numerals, number names, and expanded form.	2 M1 Lesson 23: Organize, count, and record a collection of objects. 2 M1 Lesson 26: Write base-ten numbers in expanded form. 2 M1 Lesson 27: Read, write, and relate base-ten numbers in all forms. 2 M1 Lesson 31: Count the total value of ones, tens, and hundreds with place value disks. 2 M1 Lesson 38: Compare numbers in different forms.
NY-2.NBT. 4 Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.	2 M1 Topic I: Compare Two Three-Digit Numbers in Different Forms

Number and Operations in Base Ten

Use place value understanding and properties of operations to add and subtract.

New York Next Generation
 Mathematics Learning Standards
 Aligned Components

NY-2.NBT. 5
 2 M4 Lesson 4: Represent and solve compare with bigger unknown word problems.

Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.

2 M4 Lesson 5: Use the associative property to make a benchmark number to add within 1,000.
2 M4 Lesson 6: Use compensation to add within 1,000.
2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers.
2 M4 Lesson 12: Take from a ten or a hundred to subtract.
2 M4 Lesson 13: Use compensation to subtract within 1,000.
2 M4 Lesson 20: Subtract by using multiple strategies and defend an efficient strategy.
2 M4 Lesson 22: Solve compare with smaller unknown word problems.
2 M4 Lesson 23: Solve two-step addition and subtraction word problems.
NY-2.NBT. 6 2 M2 Lesson 1: Reason about addition with four addends.
Add up to four two-digit numbers using
2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers. strategies based on place value and properties of operations.

NY-2.NBT.7a

Add and subtract within 1,000 , using concrete models or drawings, and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. Relate the strategy to a written representation.

2 M2 Lesson 2: Break apart and add like units.
2 M2 Lesson 3: Use compensation to add within 100.
2 M2 Lesson 4: Use compensation to add within 200.
2 M2 Lesson 5: Make a ten to add within 100.
2 M2 Lesson 6: Make a ten to add within 200.
2 M2 Lesson 7: Solve word problems by using simplifying strategies for addition.
2 M2 Topic B: Strategies for Composing a Ten and a Hundred to Add

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.NBT.7a continued

2 M2 Lesson 14: Use addition and subtraction strategies to find an unknown part.
2 M2 Lesson 15: Use compensation to subtract within 100.
2 M2 Lesson 16: Use compensation to subtract within 200.
2 M2 Lesson 17: Take from a ten to subtract within 200.
2 M2 Lesson 18: Take from a hundred to subtract within 200.
2 M2 Lesson 19: Solve word problems with simplifying strategies for subtraction.
2 M2 Lesson 20: Reason about when to unbundle a ten to subtract.
2 M2 Lesson 22: Use place value drawings to decompose a ten and relate them to written recordings.
2 M2 Lesson 23: Use concrete models and drawings to decompose a hundred.
2 M2 Lesson 24: Use place value drawings to decompose a hundred and relate them to written recordings.

2 M2 Lesson 25: Use place value drawings to subtract with two decompositions.
2 M4 Lesson 5: Use the associative property to make a benchmark number to add within 1,000.
2 M4 Lesson 6: Use compensation to add within 1,000.
2 M4 Lesson 7: Use concrete models to add and relate them to written recordings.
2 M4 Lesson 8: Use place value drawings to represent addition and relate them to written recordings, part 1.

2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2.

2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Topic C: Simplifying Strategies for Subtracting Within 1,000
2 M4 Topic D: Strategies for Decomposing Tens and Hundreds Within 1,000
2 M4 Lesson 21: Apply strategies to find sums and differences and relate addition to subtraction.
2 M4 Lesson 24: Organize, count, and represent a collection of objects.

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.NBT.7b

Understand that in adding or subtracting up to three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and sometimes it is necessary to compose or decompose tens or hundreds.

NY-2.NBT. 8

Mentally add 10 or 100 to a given number $100-900$, and mentally subtract 10 or 100 from a given number 100-900

2 M2 Topic B: Strategies for Composing a Ten and a Hundred to Add
2 M2 Lesson 20: Reason about when to unbundle a ten to subtract.
2 M2 Lesson 21: Use concrete models to decompose a ten with two-digit totals.
2 M2 Lesson 22: Use place value drawings to decompose a ten and relate them to written recordings.
2 M2 Lesson 23: Use concrete models and drawings to decompose a hundred.
2 M2 Lesson 24: Use place value drawings to decompose a hundred and relate them to written recordings.

2 M2 Lesson 25: Use place value drawings to subtract with two decompositions.
2 M4 Lesson 5: Use the associative property to make a benchmark number to add within 1,000.
2 M4 Lesson 6: Use compensation to add within 1,000
2 M4 Lesson 7: Use concrete models to add and relate them to written recordings.
2 M4 Lesson 8: Use place value drawings to represent addition and relate them to written recordings, part 1.

2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2.

2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Topic C: Simplifying Strategies for Subtracting Within 1,000
2 M4 Topic D: Strategies for Decomposing Tens and Hundreds Within 1,000
2 M4 Lesson 21: Apply strategies to find sums and differences and relate addition to subtraction.
2 M4 Lesson 24: Organize, count, and represent a collection of objects.

2 M4 Lesson 1: Organize, count, and represent a collection of objects
2 M4 Lesson 2: Mentally add and subtract multiples of 10 and 100 with unknowns in various positions.
2 M4 Lesson 3: Solve multi-step word problems and reason about equal expressions.

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.NBT. 9

Explain why addition and subtraction strategies work, using place value and the properties of operations.

2 M4 Lesson 5: Use the associative property to make a benchmark number to add within 1,000.
2 M4 Lesson 6: Use compensation to add within 1,000.
2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers.
2 M4 Topic C: Simplifying Strategies for Subtracting Within 1,000
2 M4 Lesson 20: Subtract by using multiple strategies and defend an efficient strategy.
2 M4 Lesson 21: Apply strategies to find sums and differences and relate addition to subtraction.

Measurement and Data

Measure and estimate lengths in standard units.

New York Next Generation

 Mathematics Learning Standards
Aligned Components

NY-2.MD. 1

Measure the length of an object to the nearest whole by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.

2 M1 Lesson 5: Connect measurement to physical units by iterating a centimeter cube.
2 M1 Lesson 6: Make a 10 cm ruler and measure objects.
2 M1 Lesson 7: Measure lengths and relate 10 cm and 1 cm .
2 M1 Lesson 8: Make a meter stick and measure with various tools.
2 M1 Lesson 13: Estimate and measure height to model metric relationships.
2 M5 Lesson 8: Iterate an inch tile to create a unit ruler and measure to the nearest inch.
2 M5 Lesson 9: Use an inch ruler and a yard stick to estimate and measure the length
of various objects.

New York Next Generation Mathematics Learning Standards

Aligned Components

NY-2.MD. 2

Measure the length of an object twice, using different "length units" for the two measurements; describe how the two measurements relate to the size of the unit chosen.

NY-2.MD. 3
Estimate lengths using units of inches, feet, centimeters, and meters.

NY-2.MD. 4

Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard "length unit."

2 M1 Lesson 10: Reason about the relationship between the size of the unit and the number of units needed to measure.

2 M5 Lesson 10: Measure an object twice by using different length units, and compare and relate measurement to unit size.

2 M1 Lesson 11: Estimate and compare lengths.
2 M1 Lesson 13: Estimate and measure height to model metric relationships.
2 M5 Lesson 9: Use an inch ruler and a yard stick to estimate and measure the length of various objects.
2 M1 Lesson 12: Model and reason about the difference in length.

2 M1 Lesson 14: Represent and compare students' heights.
2 M5 Lesson 11: Measure to compare differences in lengths.

Measurement and Data

Relate addition and subtraction to length.

New York Next Generation
Mathematics Learning Standards

NY-2.MD. 5

Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units.

NY-2.MD. 6

Represent whole numbers as lengths from 0 on a number line with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line.

Aligned Components

2 M1 Lesson 18: Solve compare with difference unknown word problems by using measurement contexts

2 M1 Lesson 19: Solve compare with difference unknown word problems in various contexts.
2 M5 Lesson 13: Solve word problems that involve measurements and reason about estimates.
2 M5 Lesson 14: Solve addition and subtraction two-step word problems that involve length.
2 M1 Topic D: Solve Compare Problems by Using the Ruler as a Number Line
2 M5 Lesson 12: Identify unknown numbers on a number line by using the interval as a reference point.

Measurement and Data

Work with time and money.

New York Next Generation
Mathematics Learning Standards

Aligned Components

NY-2.MD. 7

Tell and write time from analog and digital clocks in five minute increments, using a.m. and p.m. Develop an understanding of common terms, such as, but not limited to, quarter past, half past, and quarter to.

NY-2.MD.8a

Count a mixed collection of coins whose sum is less than or equal to one dollar.

2 M3 Lesson 14: Distinguish between a.m. and p.m.
2 M3 Lesson 15: Recognize time as measurement units.
2 M3 Lesson 16: Use a clock to tell time to the half hour or quarter hour.
2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.

2 M5 Lesson 1: Organize, count, and represent a collection of coins.
2 M5 Lesson 2: Use the fewest number of coins to make a given value.
2 M5 Lesson 3: Solve one- and two-step word problems to find the total value of a group of coins.
2 M5 Lesson 5: Use different strategies to make 1 dollar or to make change from 1 dollar.
2 M5 Lesson 6: Solve word problems by using different ways to make change from 1 dollar.

2 M5 Lesson 5: Use different strategies to make 1 dollar or to make change from 1 dollar.
2 M5 Lesson 7: Solve word problems by using bills and coins.

Measurement and Data

Represent and interpret data.

New York Next Generation Mathematics Learning Standards

Aligned Components

2 M5 Lesson 15: Use measurement data to create a line plot.
2 M5 Lesson 16: Create a line plot to represent data and ask and answer questions.

NY-2.MD. 10

Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a picture graph or a bar graph.

2 M1 Topic A: Represent Data to Solve Problems

Geometry

Reason with shapes and their attributes.

New York Next Generation
Mathematics Learning Standards

NY-2.G. 1

Classify two-dimensional figures as polygons or non-polygons.

Aligned Components

2 M3 Lesson 2: Use attributes to identify, build, and describe two-dimensional shapes.
2 M3 Lesson 3: Identify, build, and describe right angles and parallel lines.
2 M3 Lesson 4: Use attributes to identify, classify, and compose different quadrilaterals.
2 M3 Lesson 6: Recognize that a whole polygon can be decomposed into smaller parts and the parts can be composed to make a whole.

NY-2.G. 2
Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

NY-2.G. 3

Partition circles and rectangles into two, three, or four equal shares. Describe the shares using the words halves, thirds, half of, a third of, etc. Describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.

2 M6 Lesson 11: Decompose an array to find the total efficiently.
2 M6 Lesson 12: Reason about how equal arrays can be composed differently.
2 M6 Lesson 13: Decompose an array and relate it to a number bond.

2 M3 Lesson 7: Combine shapes to create a composite shape and create a new shape from composite shapes.

2 M3 Lesson 8: Create composite shapes by using equal parts and name them as halves, thirds, and fourths.

2 M3 Lesson 9: Interpret equal shares in composite shapes as halves, thirds, and fourths.
2 M3 Topic C: Halves, Thirds, and Fourths of Circles and Rectangles

[^0]: 2 M1 Lesson 9: Relate $1 \mathrm{~cm}, 10 \mathrm{~cm}$, and 100 cm .
 2 M1 Lesson 24: Count up to 1,000 by using place value units.
 2 M1 Lesson 25: Write three-digit numbers in unit form and show the value that each digit represents.
 2 M1 Lesson 27: Read, write, and relate base-ten numbers in all forms.
 2 M1 Lesson 28: Use place value understanding to count and exchange $\$ 1, \$ 10$, and $\$ 100$ bills.
 2 M1 Lesson 30: Determine how many $\$ 10$ bills are equal to $\$ 1,000$.
 2 M1 Topic H: Compose and Decompose with Place Value Disks

