Use the place value disks to help you complete the equation.

1. \[10,000 + 10,000 = _ \text{ hundred thousand} = 10 \text{ ten thousands}\]

- **Ten thousand** is a place value unit composed of 10 thousands.
- **Hundred thousand** is a place value unit composed of 10 ten thousands.

I know I can bundle 10 of a smaller unit to make 1 of the next larger unit.

There are 10 ten thousands. I look at a place value chart.

I find ten thousands. The next larger unit is hundred thousands.

Next Larger Unit

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000,000</td>
<td>100,000</td>
<td>10,000</td>
<td>1,000</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

I can bundle and rename 10 ten thousands as 1 hundred thousand.
Use the place value disks to help you complete the equation.

2.

\[\text{1 million} = 10 \text{ hundred thousands} \]

Million is a place value unit composed of 10 hundred thousands.

I know I can bundle 10 of a smaller unit to make 1 of the next larger unit.
There are 10 hundred thousands. I look at a place value chart.
I find hundred thousands. The next larger unit is millions.

I can bundle and rename 10 hundred thousands as 1 million.
3. Shade the rectangle to break it into 2 smaller rectangles.

Then complete the equations to find the total area of the large rectangle.

Each square represents 1 square unit.

\[
5 \times \underline{13} = 5 \times (\underline{10} + \underline{3})
\]

\[
= (5 \times \underline{10}) + (5 \times \underline{3})
\]

\[
= \underline{50} + \underline{15}
\]

\[
= \underline{65}
\]

Area: \underline{65} square units

I can use the break apart and distribute strategy to find the area.

I decompose 13 into 10 and 3.

I shade a 5 by 10 rectangle and label the side lengths of the shaded and unshaded parts of the large rectangle.

I find the area by multiplying each part of 13 by 5 and then adding the products.