Name \qquad Date \qquad
Use the place value chart and arrows to show how the value of each digit changes. Then name the value of the indicated digit in both unit form and standard form.
a. $6.671 \times 100=$ \qquad What is the value of the 1 in the product? \qquad

b. $684 \div 100=$ \qquad What is the value of the 4 in the quotient? \qquad

Name \qquad Date \qquad

1. Write the standard form of a decimal fraction that has:
a. 3 ones and 7 tenths \qquad
b. 3 thousandths and 7 tenths \qquad
c. 3 tenths and 7 thousandths \qquad
d. 3 hundredths and 7 thousandths \qquad
2. Write an equation that would change the value of the digit 2 in the decimal fraction 0.20 to 2 hundredths.

Name \qquad Date \qquad

1. Convert using an equation.
a. 2 meters to centimeters
$2 \mathrm{~m}=$ \qquad cm
b. 40 millimeters to meters
$40 \mathrm{~mm}=$ \qquad m
2. Write the equivalent measures.
a. A piece of fabric measures 3.9 meters. Express this length in centimeters.
b. Ms. Ramos's thumb measures 4 centimeters. Express this length in meters.

Name

\qquad Date \qquad

1. Express nine thousandths as a decimal.
2. Express twenty-nine thousandths as a fraction.
3. Express 24.357 in words.
a. Write the expanded notation using fractions or decimals.
b. Express in unit form.

Name \qquad Date \qquad

1. Show the numbers on the place value chart using digits. Use $>,<$, or $=$ to compare. Explain your thinking in the space to the right.

2. Use $>,<$, and = to compare the numbers.
32.725

32.735
3. Arrange the numbers in decreasing order.

76.342	76.332	76.232	76.343

\qquad
(

Name \qquad Date \qquad

Use the table to round the number to the given places. Label the number lines, and circle the rounded value.
8.546

Tens	Ones	\bullet	Tenths	Hundredths	Thousandths
	8	\bullet	5	4	6
		\bullet	85	4	6
		\bullet		854	6
		\bullet			8546

a. Hundredths

b. Tens

Name \qquad Date \qquad
Round the quantity to the given place value. Draw number lines to explain your thinking. Circle the rounded value on the number line.
a. $\quad 13.989$ to the nearest tenth
b. 382.993 to nearest hundredth
© Great Minds PBC TEKS Edition |
greatminds.org/Texas
\qquad Date \qquad

1. Solve.
a. 4 thousandths +8 thousandths $=$ \qquad thousandths = \qquad hundredths \qquad thousandths
b. 64 thousandths +8 thousandths $=$ \qquad thousandths = \qquad hundredths \qquad thousandths
2. Solve using the standard algorithm.

a. $31.4+1.809=\ldots$	b. $36.258+8.67=\square$

Name \qquad Date \qquad

1. Subtract.
$0.017-0.008=$ \qquad thousandths - \qquad thousandths = \qquad thousandths

Express the difference in standard form. \qquad
2. Subtract vertically, showing all work.
a. $84.637-28.56=$ \qquad
b. $7-0.355=$ \qquad

Name \qquad Date \qquad

1. Solve by drawing disks on a place value chart. Write an equation, and express the product in standard form.

4 copies of 3 tenths
2. Complete the area model, and then find the product.
3×9.63

Name \qquad Date \qquad

1. Use estimation to choose the correct value for each expression.
a. 5.1×2
1.02
10.2
102
b. 4×8.93
35.72
357.2
3572
2. Estimate the answer for 7.13×6. Explain your reasoning using words, pictures, or numbers.

Name \qquad Date \qquad

1. Complete the sentences with the correct number of units, and then complete the equation.
a. 2 groups of \qquad tenths is 1.8.
$1.8 \div 2=$ \qquad
b. 4 groups of \qquad hundredths is 0.32 . $0.32 \div 4=$ \qquad
2. Complete the number sentence. Express the quotient in unit form and then in standard form.
a. $4.5 \div 5=$ \qquad tenths $\div 5=$ \qquad tenths = \qquad
b. $6.12 \div 6=$ \qquad ones $\div 6+$ \qquad hundredths $\div 6$
$=$ \qquad ones + \qquad hundredths
$=$ \qquad

Name \qquad Date \qquad

1. Draw place value disks on the place value chart to solve. Show each step using the standard algorithm.
$5.36 \div 2=$ \qquad

Ones	Tenths	Hundredths

$$
2 \longdiv { 5 . 3 6 }
$$

2. Solve using the standard algorithm.

$$
0.52 \div 4=
$$

\qquad

Name \qquad Date \qquad

1. Draw place value disks on the place value chart to solve. Show each step in the standard algorithm.
$0.6 \div 4=$

Ones	\bullet	Tenths	Hundredths

2. Solve using the standard algorithm.
$9.8 \div 5=$

Name \qquad Date \qquad

Write a word problem with two questions that matches the strip diagram below, and then solve.

Weight of Jim's Dog ?

Name \qquad Date \qquad

Record the factors of the given numbers as multiplication sentences and as a list in order from least to greatest. Classify each as prime (P) or composite (C).

	Multiplication Sentences		Frime (P) or
a.	9	The factors of 9 are:	
b.	12	The factors of 12 are:	
c.	19	The factors of 19 are:	

Name
Date \qquad

1. Explain your thinking or use division to answer the following.

a. Is 2 a factor of 34 ?	b. Is 3 a factor of 34 ?
c. Is 4 a factor of $72 ?$	d. Is 3 a factor of $72 ?$

2. Use the associative property to explain why the following statement is true. Any number that has 9 as a factor also has 3 as a factor.

Name \qquad Date \qquad

1. Fill in the unknown multiples of 11.
$5 \times 11=$ \qquad
$6 \times 11=$ \qquad
$7 \times 11=$ \qquad
$8 \times 11=$ \qquad
$9 \times 11=$ \qquad
2. Complete the pattern of multiples by skip-counting.

7, 14, \qquad , 28, \qquad , , \qquad
\qquad
\qquad
3. a. List the numbers that have 18 as a multiple.
b. What are the factors of 18 ?
c. Are your two lists the same? Why or why not?

Name

\qquad Date \qquad
Use the calendar below to complete the following:

1. Cross off all composite numbers.
2. Circle all of the prime numbers.
3. List any remaining numbers.

Sunday	Monday	Tuesday	Wednesday		Thursday	Friday
				1	Saturday	
		5	6	7	8	2
3	4	12	13	14	15	16
10	11	19	20	21	22	23
17	18	26	27	28	29	30
24	25					
31						

\qquad Date \qquad

1. Find the products.
a. $1,900 \times 20$
b. $6,000 \times 50$
c. 250×300
2. Explain how knowing $50 \times 4=200$ helps you find 500×400.

Name \qquad Date \qquad
Round the factors and estimate the products.
a. $656 \times 106 \approx$
b. $3,108 \times 7,942 \approx$
c. $425 \times 9,311 \approx$
d. $8,633 \times 57,008 \approx$

Name \qquad Date \qquad

1. Draw a model. Then, write the numerical expressions.

| a. The difference between 8 forty-sevens and |
| :--- | :--- |
| 7 forty-sevens |\quad b. 6 times the sum of 12 and 8

2. Compare the two expressions using $>,<$, or $=$.

| $62 \times(70+8)$ | $(70+8) \times 26$ |
| :--- | :--- | :--- |

Name \qquad Date \qquad
Solve using mental math. Draw a strip diagram and fill in the blanks to show your thinking.

Name \qquad Date \qquad

Draw an area model, and then solve using the standard algorithm.
a. $21 \times 23=$ \qquad
21
$\times 23$
b. $143 \times 12=$ \qquad
143
$\times \quad 12$
\qquad
Draw an area model. Then, solve using the standard algorithm. Use arrows to match the partial products from your area model to the partial products in the algorithm.
a. 78×42
78
$\times 42$
b. 783×42

783
$\times 42$

Name \qquad

Draw an area model. Then, solve using the standard algorithm.
a. 642×257

642
$\times 257$
b. 642×207

$$
\begin{array}{r}
642 \\
\times 207
\end{array}
$$

Name \qquad Date \qquad
Estimate the product first. Solve by using the standard algorithm. Use your estimate to check the reasonableness of the product.
a. 283×416
\approx \qquad \times
$=$ \qquad
\qquad
283
$\times 416$
b. $2,803 \times 406$

2,803
$\times \quad 406$

$=$ \qquad

Name \qquad Date \qquad
Solve.
Juwad picked 30 bags of apples on Monday and sold them at his fruit stand for $\$ 3.45$ each. The following week he picked and sold 26 bags.
a. How much money did Juwad earn in the first week?
b. How much money did he earn in the second week?
c. How much did Juwad earn selling bags of apples these two weeks?
d. Extension: Each bag Juwad picked holds 15 apples. How many apples did he pick in two weeks? Write an expression to represent this problem.
\qquad

1. Estimate the product. Solve using an area model and the standard algorithm. Remember to express your products in standard form.
a. $33.2 \times 21 \approx$ \qquad \times \qquad $=$ \qquad
b. $1.7 \times 55 \approx$ \qquad \times \qquad $=$ \qquad
2. If the product of 485×35 is 16,975 , what is the product of 485×3.5 ? How do you know?

Name \qquad Date \qquad

Use estimation and place value reasoning to find the unknown product. Explain how you know.

1. If $647 \times 63=40,761$
then
$6.47 \times 63=$ \qquad
2. Solve using the standard algorithm.
a. $\quad 6.13 \times 14$
b. $\quad 104.35 \times 34$

Name \qquad Date \qquad

Estimate. Then, solve using the standard algorithm. You may draw an area model if it helps you.
a. $\quad 3.03 \times 402 \approx$ \qquad \times \qquad $=$
b. $667 \times 1.25 \approx$ \qquad \times \qquad $=$ \qquad

Name \qquad Date \qquad
Solve.
a. Convert pounds to ounces.
(1 pound = 16 ounces)

14 pounds = \qquad \times (1 pound)
$=$ \qquad $\times 1$ \qquad ounces)
$=$ \qquad ounces
b. Convert kilograms to grams.
18.2 kilograms = \qquad $\times 1$ \qquad
$=$ \qquad $\times 1$ \qquad
$=$ \qquad grams

Name

\qquad Date \qquad

1. Convert grams to kilograms by completing the number sentences.

4,567 grams = \qquad \times \qquad
= \qquad \times \qquad
$=$
$=$

Name

\qquad Date \qquad

Solve.
To practice for an Ironman competition, John swam 0.86 kilometer each day for 3 weeks. How many meters did he swim in those 3 weeks?

Name \qquad Date \qquad
Divide. Show your thinking.

| a. $17,000 \div 100$ | b. $59,000 \div 1,000$ |
| :--- | :--- | :--- |
| c. $12,000 \div 40$ | d. $480,000 \div 600$ |

Name \qquad Date \qquad
Estimate the quotient for the following problems.

Name \qquad Date \qquad

Estimate the quotients for the following problems.

Name \qquad Date \qquad

Divide, and then check using multiplication.
a. $73 \div 20$
b. $291 \div 30$

Name \qquad Date \qquad
Divide. Then, check with multiplication.
a. $78 \div 21$
b. $89 \div 37$

Name

\qquad Date \qquad

Divide. Then, check using multiplication.
a. $326 \div 53$
b. $192 \div 38$

Name
Date \qquad

Divide. Then, check using multiplication.
a. $413 \div 19$
b. $708 \div 67$

Name

\qquad Date \qquad

Divide. Then, check using multiplication.
a. $8,283 \div 19$
b. $1,056 \div 37$
\qquad Date \qquad

1. Divide.
a. $27.3 \div 3$
b. $27.3 \div 30$
c. $273 \div 300$
2. If $72.9 \div 90=0.81$, then the quotient of $72.9 \div 9$ is \qquad . Use place value reasoning to explain the placement of the decimal point. method.

Date \qquad

Estimate the quotients.
a. $1.64 \div 22 \approx$
b. $\quad 123.8 \div 62 \approx$
c. $\quad 6.15 \div 31 \approx$

Name

\qquad Date \qquad

1. Estimate. Then, divide using the standard algorithm and check.
a. $45.15 \div 21$
b. $\quad 14.95 \div 65$
2. We learned today that division expressions that have the same quotient and remainders are not necessarily equal to each other. Explain how this is possible.
© Great Minds PBC TEKS Edition I
greatminds.org/Texas
\qquad

Divide.
a. $28 \div 35$
b. $68.25 \div 65$

Name \qquad Date \qquad
Solve this problem, and show all of your work.
Kenny is ordering uniforms for both the girls' and boys' tennis clubs. He is ordering shirts for 43 players and two coaches at a total cost of $\$ 658.35$. Additionally, he is ordering visors for each player at a total cost of $\$ 368.51$. How much will each player pay for the shirt and visor?

Name \qquad Date \qquad

Solve.
Hayley borrowed $\$ 1,854$ from her parents. She agreed to repay them in equal installments throughout the next 18 months. How much will Hayley still owe her parents after a year?

Name \qquad Date \qquad

Solve by drawing the rectangular fraction model.

1. $\frac{1}{2}+\frac{1}{5}=$
2. In one hour, Ed used $\frac{2}{5}$ of the time to complete his homework and $\frac{1}{4}$ of the time to check his email. How much time did he spend completing homework and checking email? Write your answer as a fraction. (Extension: Write the answer in minutes.)
© Great Minds PBC TEKS Edition |
greatminds.org/Texas

Name \qquad Date \qquad

1. Draw a model to help solve $\frac{5}{6}+\frac{1}{4}$. Write your answer as a mixed number.
2. Patrick drank $\frac{3}{4}$ liter of water Monday before jogging. He drank $\frac{4}{5}$ liter of water after his jog. How much water did Patrick drink altogether? Write your answer as a mixed number.

Name \qquad Date \qquad

For the following problems, draw a picture using the rectangular fraction model and write the answer. Simplify your answer, if possible.
a. $\frac{1}{2}-\frac{1}{7}=$
b. $\frac{3}{5}-\frac{1}{2}=$

Name \qquad Date \qquad

For the following problems, draw a picture using the rectangular fraction model and write the answer. Simplify your answer, if possible.
a. $1 \frac{1}{5}-\frac{1}{2}=$
b. $\quad 1 \frac{1}{3}-\frac{5}{6}=$

Name \qquad Date \qquad

Solve the word problem using the RDW strategy. Show all of your work.
Mr. Pham mowed $\frac{2}{7}$ of his lawn. His son mowed $\frac{1}{4}$ of it. Who mowed the most? How much of the lawn still needs to be mowed?
\qquad Date \qquad
Add or subtract.
a. $5+1 \frac{7}{8}=$
b. $3-1 \frac{3}{4}=$
c. $7 \frac{3}{8}+4=$
d. $4-2 \frac{3}{7}=$
\qquad Date \qquad

Make like units, and then add.
a. $\frac{1}{6}+\frac{3}{4}=$
b. $1 \frac{1}{2}+\frac{2}{5}=$

Name \qquad Date \qquad

Add.

1. $3 \frac{1}{2}+1 \frac{1}{3}=$
2. $4 \frac{5}{7}+3 \frac{3}{4}=$

Name \qquad Date \qquad

Generate equivalent fractions to get like units. Then, subtract.
a. $\frac{3}{4}-\frac{3}{10}=$
b. $3 \frac{1}{2}-1 \frac{1}{3}=$

Name

\qquad Date \qquad

Subtract.

1. $5 \frac{1}{2}-1 \frac{1}{3}=$
2. $8 \frac{3}{4}-5 \frac{5}{6}=$

Name \qquad Date \qquad

1. Circle the correct answer.
a. $\frac{1}{2}+\frac{5}{12}$
greater than 1
less than 1
b. $2 \frac{7}{8}-1 \frac{7}{9}$
greater than 1
less than 1
c. $1 \frac{1}{12}-\frac{7}{10}$
greater than $\frac{1}{2}$
less than $\frac{1}{2}$
d. $\frac{3}{7}+\frac{1}{8}$
greater than $\frac{1}{2}$
less than $\frac{1}{2}$
2. Use $>,<$, or = to make the following statement true.

$$
4 \frac{4}{5}+3 \frac{2}{3}=8 \frac{1}{2}
$$

Name

\qquad Date \qquad
Fill in the blank to make the statement true.

1. $1 \frac{3}{4}+\frac{1}{6}+$ \qquad $=7 \frac{1}{2}$
2. $8 \frac{4}{5}-\frac{2}{3}-$ \qquad $=3 \frac{1}{10}$

Name \qquad Date \qquad

Solve the word problem using the RDW strategy. Show all of your work.
Cheryl bought a sandwich for $5 \frac{1}{2}$ dollars and a drink for $\$ 2.60$. If she paid for her meal with a $\$ 10$ bill, how much money did she have left? Write your answer as a fraction and in dollars and cents.

Name \qquad Date \qquad

Draw the following ribbons.
a. 1 ribbon. The piece shown below is only $\frac{2}{3}$ of the whole. Complete the drawing to show the whole ribbon.

b. 1 ribbon. The piece shown below is $\frac{1}{4}$ of the whole. Complete the drawing to show the whole ribbon.

c. 3 ribbons, A, B, and $C .1$ third of A is the same length as B. C is half as long as B. Draw a picture of the ribbons.

Name \qquad Date \qquad

1. Decompose each fraction modeled by a strip diagram as a sum of unit fractions. Write the equivalent multiplication sentence.
a.

b.

1

2. Draw a strip diagram, and record the given fraction's decomposition into unit fractions as a multiplication sentence.

$$
\frac{6}{9}
$$

Name \qquad Date \qquad

1. Solve using unit form.

$$
5 \times \frac{2}{3}
$$

2. Solve.
$11 \times \frac{5}{6}$

Name

\qquad Date \qquad

Solve using any method.

1. $7 \times \frac{3}{4}$
2. $9 \times \frac{2}{5}$
3. $60 \times \frac{5}{8}$
\qquad Date \qquad

Multiply. Write each product as a mixed number.

1. $4 \times 5 \frac{3}{8}$
2. $4 \frac{3}{10} \times 3$

Name

\qquad Date \qquad

1. Fill in the unknown factors.

$$
8 \times 5 \frac{2}{3}=\left(_\times 5\right)+\left(_\times \frac{2}{3}\right)
$$

2. Multiply. Use the distributive property.

$$
6 \frac{5}{8} \times 7
$$

\qquad Date \qquad

Use the RDW process to solve.
Jeff has ten packages that he wants to mail. Nine identical packages weigh $2 \frac{7}{8}$ pounds each. A tenth package weighs two times as much as one of the other packages. How many pounds do all ten packages weigh?

Name \qquad Date \qquad
Coach Taylor asked his team to record the distance they ran during practice.
The distances are listed in the table.

1. Use the table to locate the incorrect data on the dot plot.

Circle any incorrect points.
Mark any missing points.

Running Practice

Distance (in miles)
2. Of the team members who ran $1 \frac{6}{8}$ miles, how many miles did those team members run combined?

- $=1$ tean member

Team Members	Distance (in miles)
Alec	$1 \frac{3}{4}$
Henry	$1 \frac{1}{2}$
Charles	$2 \frac{1}{8}$
Steve	$1 \frac{3}{4}$
Pitch	$2 \frac{2}{4}$
Raj	$1 \frac{6}{8}$
Tony	$2 \frac{1}{2}$
Pam	\begin{tabular}{r\|r
\hline
\end{tabular} |

Name \qquad Date \qquad

1. Find the value of each of the following.

a. $\frac{1}{4}$ of $16=$
b. $\frac{3}{4}$ of $16=$
2. Out of 18 cookies, $\frac{2}{3}$ are chocolate chip. How many of the cookies are chocolate chip?

Name \qquad Date \qquad

Solve using a strip diagram.
a. $\frac{3}{5}$ of 30
b. $\frac{3}{5}$ of a number is 30. What's the number?
c. Mr. Johnson baked 2 dozen cookies. Two-thirds of the cookies were oatmeal. How many oatmeal cookies did Mr. Johnson bake?

Name \qquad Date \qquad

Solve each problem in two different ways as modeled in the example.

$$
\text { Example: } \frac{2}{3} \times 6=\frac{2 \times 6}{3}=\frac{12}{3}=4 \quad \frac{2}{3} \times 6=\frac{2 \times 6^{2}}{3_{1}}=4
$$

a. $\frac{2}{3} \times 15$

$$
\frac{2}{3} \times 15
$$

b. $\frac{5}{4} \times 12$

$$
\frac{5}{4} \times 12
$$

\qquad Date \qquad

1. Express 36 minutes as a fraction of an hour: 36 minutes $=$ \qquad hour
2. Solve.
a. $\frac{2}{3}$ feet $=$ \qquad inches
b. $\frac{2}{5} \mathrm{~m}=$ \qquad cm
c. $\frac{5}{6}$ year $=\ldots$ months

Name \qquad Date \qquad

1. Rewrite these expressions using words.
a. $\frac{3}{4} \times\left(2 \frac{2}{5}-\frac{5}{6}\right)$
b. $2 \frac{1}{4}+\frac{8}{3}$
2. Write an expression, and then solve.

Three less than four times the sum of eight thirds and nine

Name \qquad Date \qquad

1. Use a strip diagram to solve.

$$
\frac{2}{3} \text { of } 5
$$

2. Create a story problem about flowers for the strip diagram below. Your story must include a fraction.

\qquad Date \qquad

In a classroom, $\frac{1}{6}$ of the students are wearing blue shirts, and $\frac{2}{3}$ are wearing white shirts. There are 36 students in the class. How many students are wearing a shirt other than blue or white?

Name \qquad Date \qquad

Convert. Express your answer as a mixed number, if possible.
a. $5 \mathrm{in}=$ \qquad ft
b. 13 in $=$ \qquad ft
\qquad
c. $9 \mathrm{oz}=$ lb
d. $18 \mathrm{oz}=$ \qquad lb

Name \qquad Date \qquad

Convert. If possible, express your answer as a mixed number.
a. $2 \frac{1}{6} \mathrm{ft}=$ \qquad in
b. $3 \frac{3}{4} \mathrm{yd}=$ \qquad ft
c. $7 \mathrm{c}=$ \qquad pt
d. $3 \frac{2}{3}$ years $=$ \qquad months
\qquad Date \qquad

1. Draw a strip diagram and a number line to solve. Fill in the blanks that follow.
a. $5 \div \frac{1}{2}=$ \qquad There are \qquad halves in 1 whole.

There are \qquad halves in 5 wholes.

5 is $\frac{1}{2}$ of what number? \qquad
b. $4 \div \frac{1}{4}=$ \qquad There are \qquad fourths in 1 whole.

There are \qquad fourths in \qquad wholes.

4 is $\frac{1}{4}$ of what number? \qquad
2. Ms. Leverenz is doing an art project with her class. She has a 3 foot piece of ribbon. If she gives each student an eighth of a foot of ribbon, will she have enough for her class of 22 students?

Name \qquad Date \qquad

1. Solve. Support at least one of your answers with a model or strip diagram.
a. $\frac{1}{2} \div 4=$ \qquad
b. $\frac{1}{8} \div 5=$ \qquad
2. Larry spends half of his workday teaching piano lessons. If he sees 6 students, each for the same amount of time, what fraction of his workday is spent with each student?

Name \qquad Date \qquad

1. Kevin divides 3 pieces of paper into fourths. How many fourths does he have? Draw a picture to support your response.
2. Sybil has $\frac{1}{2}$ of a pizza left over. She wants to share the pizza with 3 of her friends. What fraction of the original pizza will Sybil and her 3 friends each receive? Draw a picture to support your response.

Name \qquad Date \qquad

Create a word problem for the following expressions, and then solve.
a. $4 \div \frac{1}{2}$
b. $\frac{1}{2} \div 4$

Name \qquad Date \qquad

Maria gets a summer job that pays $\$ 1,200$ per month and provides a place for her to live, so she does not need to pay rent. Her budget is described in the table. How much is Maria's car payment if her budget is balanced?

Maria's Budget	
Description	Amount
Groceries	$\$ 325$
Gas for car	$\$ 75$
Phone	$\$ 130$
Insurance	$\$ 255$
Car payment	
Savings	$\$ 100$
Restaurants and entertainment	$\$ 80$

Name \qquad Date \qquad

1. The strip diagram represents John's pay.
a. Label the whole and the parts with gross income, net income, and taxes.

b. What are the two types of taxes that are deducted from a person's gross income?
2. John's net income each month is $\$ 5,500$. Each month, $\$ 448.20$ is deducted for income tax, $\$ 335.50$ is deducted for payroll tax, and $\$ 210.00$ is deducted for health insurance. What is John's monthly gross income?

Name \qquad Date \qquad

1. Mrs. Diaz buys school clothes for her children. The subtotal on the receipt, which shows the price for all the clothes before tax, is $\$ 250$. The sales tax rate is $\frac{1}{10}$ of the price of the clothes. How much does Mrs. Diaz spend in all?
2. Which of the following are examples of property taxes? Circle all correct answers.

A tax paid on a farm a person owns.
A tax paid on a piece of clothing a person buys.
A tax paid on a home a person owns.
A tax paid on a piece of land a person owns.

Name \qquad Date \qquad

1. What are the two methods of payment? Give the advantages and disadvantages of each.
2. What actions can be taken to keep a budget balanced when expenses exceed income?

Name \qquad Date \qquad

1. Write an equivalent expression in numerical form.

1 fourth as much as the product of two-thirds and 0.8
2. Write an equivalent expression in word form.
a. $\frac{3}{8} \times\left(1-\frac{1}{3}\right)$
b. $\left(1-\frac{1}{3}\right) \div 2$
3. Compare the expressions in 2(a) and 2(b). Without evaluating, identify which quantity is greater. Explain your answer.

Name \qquad Date \qquad

1. What is the volume of the figures pictured below?
a.

b.

2. Draw a picture of a figure with a volume of 3 cubic units on the dot paper.

Name \qquad Date \qquad

1. If this figure were to be folded into a box, how many cubes would fill it?

Number of cubes: \qquad
2. Predict how many centimeter cubes will fit in the box, and briefly explain your prediction. Use cubes to find the actual volume. (The figure is not drawn to scale.)

Prediction: \qquad

Actual: \qquad

Name \qquad Date \qquad

1. Use unit cubes to build the figure to the right, and fill in the missing information.

Number of layers: \qquad
Number of cubes in each layer: \qquad
Volume: \qquad cubic centimeters

2. This prism measures 3 units by 4 units by 2 units. Draw the layers as indicated.

Number of layers: 4
Number of cubic units in each layer: 6
Volume: \qquad cubic centimeters

\qquad Date \qquad

1. Calculate the volume of prism.

Length: \qquad mm

Width: \qquad mm

Height: \qquad mm

Volume: \qquad mm^{3}

Write the multiplication sentence that shows how you calculated the volume. Be sure to include the units.
2. A rectangular prism has a top face with an area of $20 \mathrm{ft}^{2}$ and a height of 5 ft . What is the volume of this rectangular prism?

Name \qquad Date \qquad

a. Find the volume of the prism.
b. Shade the beaker to show how much liquid would fill the box.

Name \qquad Date \qquad
The image below represents three planters that are filled with soil. Find the total volume of soil in the three planters. Planter A is 14 inches by 3 inches by 4 inches. Planter B is 9 inches by 3 inches by 3 inches.

Name \qquad Date \qquad
A storage shed is a rectangular prism and has dimensions of 6 meters by 5 meters by 12 meters. If Jean were to double these dimensions, she believes she would only double the volume. Is she correct? Explain why or why not. Include a drawing in your explanation.
\qquad Date \qquad
Sketch a rectangular prism that has a volume of 36 cubic cm . Label the dimensions of each side on the prism. Fill in the blanks that follow.

Height: \qquad cm

Length: \qquad cm

Width: \qquad cm

Volume: \qquad cubic cm

Name \qquad Date \qquad
A student designed this sculpture. Using the dimensions on the sculpture, find the dimensions of each rectangular prism. Then, calculate the volume of each prism.
a. Rectangular Prism Y

Height: \qquad inches

Length: \qquad inches

Width: \qquad inches

Volume: \qquad cubic inches

b. Rectangular Prism Z

Height: \qquad inches

Length: \qquad inches

Width: \qquad inches

Volume: \qquad cubic inches
c. Find the total volume of the sculpture. Label the answer.
\qquad

Emma tiled a rectangle and then sketched her work. Fill in the missing information, and multiply to find the area.

Emma's Rectangle:

\qquad units long \qquad units wide

Area $=$ \qquad units 2

Name \qquad Date \qquad
Measure the rectangle to the nearest $\frac{1}{4}$ inch with your ruler, and label the dimensions. Find the area.
\square

Name \qquad Date \qquad

Find the area of the following rectangles. Draw an area model if it helps you.

1. $\frac{7}{2} \mathrm{~mm} \times 3 \mathrm{~mm}$
2. $5 \frac{7}{8} \mathrm{~km} \times 4 \mathrm{~km}$

Name
Date \qquad
Mr. Klimek made his wife a rectangular vegetable garden. The width is $5 \frac{3}{4} \mathrm{ft}$, and the length is 9 ft . What is the area of the garden?

Name \qquad Date \qquad
Wheat grass is grown in planters that are 3 inch by $1 \frac{3}{4}$ inch. If there is a 6×6 array of these planters with no space between them, what is the area covered by the planters?

Name \qquad Date \qquad

Use appropriate tools to solve the following problems.

1. The triangles below have been classified by a shared attribute (side length or angle type). Use one of the words acute, right, obtuse, scalene, isosceles, or equilateral to label the headings to identify the way the triangles have been sorted.

2. Draw lines to identify each triangle according to side length.
a.

b.

c.

Isosceles
Equilateral

Scalene

Name \qquad Date \qquad

1. Draw an isosceles triangle.
2. Draw a scalene triangle.

Name \qquad Date \qquad
a. Use a ruler and a set square to draw a trapezoid.
b. What attribute must be present for a quadrilateral to also be a trapezoid?

Name \qquad Date \qquad

1. Draw a parallelogram.
2. What attributes do all parallelograms share?

Name

\qquad Date \qquad

1. Draw a rhombus.
2. Draw a rectangle.

Name \qquad Date \qquad

1. List the property that must be present to call a rectangle a square.
2. Excluding rhombuses and squares, explain the difference between parallelograms and kites.

Name \qquad Date \qquad
Use your tools to draw a square in the space below. Then, fill in the blanks with an attribute. There is more than one answer to some of these.
a. Because a square is a kite, it must have \qquad -.
b. Because a square is a rhombus, it must have \qquad .
c. Because a square is a rectangle, it must have \qquad .
d. Because a square is a parallelogram, it must have \qquad .
e. Because a square is a quadrilateral, it must have \qquad .
\qquad Date \qquad

1. Use the word bank to fill in the blanks.
squares parallelograms

All \qquad are \qquad but not all \qquad are \qquad .
2. Use the word bank to fill in the blanks.

kites rhombuses

All \qquad are \qquad but not all \qquad are \qquad _.

Name \qquad Date \qquad
Use number line $\boldsymbol{\ell}$ to answer the questions.

a. Plot point C so that its distance from the origin is 1 .
b. Plot point $E \frac{4}{5}$ closer to the origin than C. What is its coordinate? \qquad
c. Plot a point at the midpoint of C and E. Label it H.

Name \qquad Date \qquad

1. Name the coordinates of the shapes below.

Shape	\boldsymbol{x}-coordinate	\boldsymbol{y}-coordinate
Sun		
Arrow		
Heart		

2. Plot a square at $\left(3,3 \frac{1}{2}\right)$.

3. Plot a triangle at $\left(4 \frac{1}{2}, 1\right)$.

Name \qquad Date \qquad
Use a ruler on the grid below to construct the axes for a coordinate plane. The x-axis should intersect points L and M. Construct the y-axis so that it contains points K and L. Label each axis.

a. Place a hash mark on each grid line on the x - and y-axis.
b. Label each hash mark so that A is located at $(1,1)$.
c. Plot the following points:

Point	x-coordinate	y-coordinate
B	$\frac{1}{4}$	0
C	$1 \frac{1}{4}$	$\frac{3}{4}$

Name \qquad Date \qquad

Fatima and Rihana are playing Battleship. They labeled their axes using just whole numbers.
a. Fatima's first guess is $(2,2)$. Rihana says, "Hit!" Give the coordinates of four points that Fatima might guess next.
b. Rihana says, "Hit!" for the points directly above and below $(2,2)$. What are the coordinates that Fatima guessed?
\qquad Date \qquad

1. Use a straightedge to construct a line that goes through points A and B. Label the line ℓ.
2. Which axis is parallel to line ℓ ?

Which axis is perpendicular to line ℓ ?
3. Plot two more points on line ℓ. Name them C and D.
4. Give the coordinates of each point below.
A: \qquad
B: \qquad
C: \qquad
D: \qquad

5. Give the coordinates of another point that falls on line ℓ with a y-coordinate greater than 20 .
\qquad Date \qquad

1. Plot the point $H\left(2 \frac{1}{2}, 1 \frac{1}{2}\right)$.
2. Line ℓ passes through point H and is parallel to the y-axis. Construct line ℓ.
3. Construct line m such that the y-coordinate of every point is $\frac{3}{4}$.
4. Line m is \qquad units from the x-axis.
5. Give the coordinates of the point on line m that is $\frac{1}{2}$ unit from the y-axis.
6. With a blue pencil, shade the portion of the plane that is less than $\frac{3}{4}$ unit from the x-axis.
7. With a red pencil, shade the portion of the plane that is less than $2 \frac{1}{2}$ units from the y-axis.
8. Plot a point that lies in the double-shaded region. Give the coordinates of the point.

\qquad Date \qquad

Complete the table. Then, plot the points on the coordinate plane.

x	y	(x, y)
0	4	
2	6	
3	7	
7	11	

1. Use a straightedge to draw a line connecting these points.
2. Write a rule to show the relationship between the x - and y-coordinates for points on the line.

3. Name two other points that are also on this line. \qquad
\qquad

Name \qquad Date \qquad
Complete this table with values for y such that each y-coordinate is 5 more than its corresponding x-coordinate.

x	y	(x, y)
0		
2		
3.5		

a. Plot each point on the coordinate plane.
b. Use a straightedge to draw a line connecting these points.
c. Name 2 other points that fall on this line with
 y-coordinates greater than 25.
d. Write the rule that represents the relationship between x and y as an equation.

Name \qquad Date \qquad

Complete the table for the given rules. Then, construct lines ℓ and m on the coordinate plane.

Line ℓ
Rule: y is 5 more than x

x	y	(x, y)
0		
1		
2		
4		

$$
\text { Line } m
$$

Rule: y is 5 times as much as x

x	y	(x, y)
0		
1		
2		
4		

Write the rules for both lines as equations.

Name \qquad Date \qquad

Use the coordinate plane below to complete the following tasks.
a. Line p represents the rule x and y are equal.
b. Construct a line, a, that is parallel to line p and contains point A.
c. Name 3 points on line a.
d. Identify a rule to describe line a.

\qquad Date \qquad

1. Complete the tables for the given rules.

Line ℓ
Rule: Triple x

x	y	(x, y)
0		
1		
2		
3		

Line m
Rule: Triple x, and then
add 1

x	y	(x, y)
0		
1		
2		
3		

a. Draw each line on the coordinate plane above.
b. Compare and contrast these lines.
2. Circle the point(s) that the line for the rule multiply x by $\frac{1}{3}$, and then add 1 would contain.
($0, \frac{1}{2}$)
(1, $\left.1 \frac{1}{3}\right)$
$\left(2,1 \frac{2}{3}\right)$
$\left(3,2 \frac{1}{2}\right)$
\qquad Date \qquad
Write the rule for the line that contains the points $\left(0,1 \frac{1}{2}\right)$ and $\left(1 \frac{1}{2}, 3\right)$.
a. Identify 2 more points on this line. Draw the line on the grid.

Point	\boldsymbol{x}	\boldsymbol{y}	(x, y)
B			
C			

b. Write a rule for a line that is parallel to $\overleftrightarrow{B C}$ and goes through point (1, $\frac{1}{2}$).

Name \qquad Date \qquad

Use the following information to complete the line graph below. Then, answer the questions that follow.
Harry runs a hot dog stand at the county fair. When he arrived on Wednesday, he had 38 dozen hot dogs for his stand. The graph shows the number of hot dogs (in dozens) that remained unsold at the end of each day of sales.

a. How many dozen hot dogs did Harry sell on Wednesday? How do you know?
b. Between which two-day period did the number of hot dogs sold change the most? Explain how you determined your answer.
c. During which three days did Harry sell the most hot dogs?
d. How many dozen hot dogs were sold on these three days?

Name \qquad Date \qquad
Brett measures the amount of rain each day during the first 14 days of January. The dot plot represents the amount of rain in centimeters.

a. How many days during the first 14 days of January had no rain?
b. What fraction of the days had less than half of a centimeter of rain?
c. On January 15, Brett measures 1.8 cm of rain. Add a dot for this rainfall amount to the dot plot.

Name \qquad Date \qquad
The stem-and-leaf plots show the heights, in inches, of two different groups of tomato plants.

Group A Tomato Plant Heights (inches)

Stem	Leaf
4	9
5	27889
6	00113
7	0
$6 \mid 1$ means 61 inches	

Group B Tomato Plant Heights
(inches)

Stem	Leaf		
4	9		
5	27889		
6	000113		
7	0		6\|1 means 6.1 inches
:---			

1. What does the circled number represent in each stem-and-leaf plot?
2. In the Group A stem-and-leaf plot, how many tomato plants are at least 60 inches tall?
3. Another tomato plant is 6.2 inches tall. How would you represent this in the Group B stem-and-leaf plot?

Name \qquad Date \qquad

Mrs. Banks coaches a softball team. She records the number of home runs and the number of runs batted in for each player. The scatterplot shows the data for one of the players.
a. What does the point on the scatterplot represent?

b. Complete the scatterplot by using the data for the other 9 players.

Home Runs, \boldsymbol{x}	8	11	7	6	8	2	4	15	10
Runs Batted In, \boldsymbol{y}	25	35	16	22	14	12	18	35	20

MATH

Name \qquad Date \qquad
Ben is a baker. He notices his baked goods seem to be baking quickly and wonders if his oven is functioning properly. He measures the actual temperature inside his oven at a variety of temperature settings and displays the data in a scatterplot.

a. Is there a relationship between the temperature setting and the actual temperature inside Ben's oven? Explain.
b. Is Ben's oven working properly? Explain.

Name \qquad Date \qquad

Match each data set or display on the left with a data set or display on the right.

10	7	8	8	9	9				
11	1	4	5	5	6	7	7	9	9
12	1								

Key: 3|1 means 3.1

$(0.8,0.9)$	$(0.5,0.9)$	$(0.7,1.1)$	$(0.3,0.5)$
$(0.6,0.6)$	$(0.4,0.5)$	$(0.5,0.7)$	

Name \qquad Date \qquad

Kenny plotted the following pairs of points and said they made a symmetric figure about a line with the rule: y is always 4.
$(3,2)$ and $(3,6)$
$(4,3)$ and $(5,5)$
($5, \frac{3}{4}$) and ($5,7 \frac{1}{4}$)
(7, $1 \frac{1}{2}$) and ($7,6 \frac{1}{2}$)

Is his figure symmetrical about the line? How do you know?

Name \qquad Date \qquad
The line graph below tracks the water level of Plainsview Creek, measured each Sunday, for 8 weeks. Use the information in the graph to answer the questions that follow.

a. About how many feet deep was the creek in Week 1?
b. According to the graph, which week had the greatest change in water depth?
c. It rained hard throughout the sixth week. During what other weeks might it have rained? Explain why you think so.
d. What might have been another cause leading to an increase in the depth of the creek?

