KEY CONCEPT OVERVIEW

During the next week, our math class will learn to sort pictures and information into categories and to record that data in a table. We will also learn to create and use picture graphs and bar graphs to organize and represent a data set with up to four categories per graph. We will discover that organizing information this way makes it easier to compare and use data to answer questions and solve problems.

You can expect to see homework that asks your child to do the following:

- Sort pictures into categories to complete a table with tally marks or numbers.
- Use data from a table to create a picture graph that includes a title, symbols, categories, and a legend, and use the data to answer questions.
- Use data from a table to create a bar graph that includes a title, categories, and a scale, and use the data to answer questions.
- Write comparison questions based on data from a table or graph. For example, "How many fewer animals are reptiles than mammals?"

SAMPLE PROBLEM (From Lesson 2)

Use the grid paper below to create a picture graph with data from the table. Then, answer the questions.
a. How many more animals are mammals and fish than birds and reptiles? 7
$11+5=16 \quad 6+3=9 \quad 16-9=7$
b. How many fewer animals are reptiles than mammals? 8
$11-3=8$

Legend: Each \bigcirc stands for 1 animal.

HOW YOU CAN HELP AT HOME

- Encourage your child to sort household objects into categories. For example, he can sort groceries by food groups or clothing by color.
- Invite your child to create a picture graph for different types of coins. Give her a small handful of pennies, dimes, nickels, and quarters, and then ask her to sort and organize the coins by type. Encourage your child to draw a picture graph on paper to represent how many of each type of coin are in the groups.
- Invite your child to use a different color for each bar when he creates a bar graph. This helps your child to distinguish the bars from each other.

TERMS

Data: A set of facts or pieces of information.
Legend: The notation on a graph explaining what any symbols represent. (See Sample Problem.)
Scale: A number line indicating what the various quantities in a bar graph represent. (See Bar Graph below.)
Symbol: A picture that represents something else (e.g., each O stands for 1 coin).

MODELS

Bar Graph: A representation of data using bars.

Table: A representation of data using rows and columns.

Toy	Number of Students
Stuffed Animals	11
Toy Cars	5
Blocks	13

Picture Graph: A representation of data using symbols (pictures).

Trees in Springfield Park

$=1$ tree

Tally Marks: A quick way to record numbers in groups of 5; used in a table or graph to keep track of results.

Ice Cream Flavor	Tally Marks	Votes		
Chocolate	$\\|\\|$	4		
Strawberry	$\\|\\|$	3		
Cookie Dough	$H+H$	10		

TIPS FOR FAMILIES

KEY CONCEPT OVERVIEW

During the next week, our math class will solve problems involving coins and bills. We will count the total value of a group of coins, skip-counting by fives and tens as needed. We will learn to make change from one dollar by using counting on and simplifying strategies (e.g., the arrow way), and we will solve one- and two-step word problems involving money.

You can expect to see homework that asks your child to do the following:

- Count on or add to find the total value of various groups of coins, and write the value by using the \varnothing symbol or the $\$$ symbol.
- Use the Read-Draw-Write (RDW) process and the arrow way, a number bond, or a tape diagram to solve word problems involving money.
- Use the fewest possible coins to show a given amount of money; for example, use a nickel and a quarter to show 30 ¢ .
- Use different strategies, such as the arrow way, to make one dollar or to make change from one dollar.

SAMPLE PROBLEM
(From Lesson 11)

Solve by using the arrow way and a number bond.
$22 \phi+78 c=100 \phi$

$$
\mathbf{2 2} \xrightarrow{+8} \mathbf{3 0} \xrightarrow{+70} \mathbf{1 0 0}
$$

HOW YOU CAN HELP AT HOME

- Help your child develop coin recognition by showing them a variety of coins and asking them to name each coin and state its value.
- Give your child groups of coins and ask them to count on to find the total value, starting with the coins of greatest value and ending with the coins of least value.
- Help your child practice making one dollar or making change from one dollar by asking them questions such as, "If I have 35ф, how much more do I need to have 100 \downarrow, or one dollar?" Give your child coins to show how they count on to one dollar, and challenge them to record their work by using the arrow way.

TERMS

Count on: To count up from one addend, or number, to the total. For example, in $6+\ldots=8$, we can start at 6 and count on two more to reach the total of 8 .

MATH

KEY CONCEPT OVERVIEW

Lessons 14 through 16 focus on personal financial literacy. Students consider saving as an alternative to spending. They also learn how money saved can grow into a larger sum over time and then calculate that growth. Students differentiate between a deposit and a withdrawal and explore responsible and irresponsible spending decisions. Students discuss the benefits and consequences associated with lending personal belongings and financial resources to others. Finally, students explore the difference between a consumer and a producer as well as between borrowing and lending.

You can expect to see homework that asks your child to do the following:

- Solve real-world problems related to saving and spending.
- Describe the difference between a consumer and a producer.
- Describe the difference between borrowing and lending.

SAMPLE PROBLEM

(From Lesson 15) \qquad
Kara has $\$ 57$ in her piggy bank. She spends $\$ 12$ on a soccer ball and $\$ 7$ on a reusable water bottle. How much money does Kara have left in her piggy bank?

Kara has \$38 left.

HOW YOU CAN HELP AT HOME

- Play the What's in My Wallet? game.

1. Tell your child how many coins and/or bills you have in your imaginary wallet. For example, you might say, "I have one bill that is worth less than 10 dollars. I also have two coins. What's in my wallet?"
2. Have your child guess the types of bills and coins as well as the total amount of money in your wallet.
3. If your child needs support, provide more clues. For example, you might say, "I have a onedollar bill and two coins that total less than 10 cents."

- Play the Price is Right game. This game makes budgeting fun and helps your child learn the difference between responsible and irresponsible spending.

1. Have your child plan a trip or family night out.
2. Set a budget for the purpose of the game. For example, you might budget $\$ 1,000$ for a family vacation or $\$ 75$ for a family dinner.
3. Have your child research and estimate the family's costs for transportation, lodging, meals, and activities.
4. Help your child learn to make trade-offs and find creative ways to stay within budget. For example, if dinner and a movie exceed the budget, find a free event to attend instead of going to a movie.

TERMS

Borrow: To use someone else's money or property with their permission and then repay or return that property on time and in good condition.
Consumer: A person who buys a product or service.
Deposit: Money that is put into a bank account. When money is deposited, the account balance goes up.
Lend: To allow someone else to use your money or property with the expectation that it will be returned on time and in good condition.
Personal financial literacy: The application of mathematical process standards to manage one's financial resources effectively for lifetime financial security.
Producer: A person who makes a product or provides a service.
Saving: Keeping money at home or in a bank account for use in the future.
Spend: To use money to buy something you need or want.
Withdrawal: Money that is taken out of a bank account. When money is withdrawn, the account balance goes down.

TIPS FOR FAMILIES

KEY CONCEPT OVERVIEW

During the next few days, our math class will revisit and deepen our understanding of concepts related to measurement. We will build on our knowledge of centimeters to learn about another unit of length, the inch. We will also learn that just as 100 centimeters form a larger unit called a meter, 12 inches form a larger unit called a foot. We will use an inch tile and a technique known as mark and move forward to measure various objects. We will also create an inch ruler and use it to measure and compare the lengths of objects around the classroom.

You can expect to see homework that asks your child to do the following:

- Use an inch tile and the mark and move forward technique to measure household objects.
- Use a student-made inch ruler to measure the length of household objects, and then use the ruler to draw lines equal to the length of each object.
- Use the student-made inch ruler to measure and label the length of each side of various shapes, and then use inches to compare the differences in length.

SAMPLE PROBLEM
(From Lesson 18)

Measure the length of an object with your ruler. Then, in the space provided, use your ruler to draw a line equal to the length of the object. (NOTE: The scenario below refers to a particular object in one classroom setting. Answers may vary.)

A crayon is $\mathbf{3}$ inches. Draw a line that is the same length as the crayon.

HOW YOU CAN HELP AT HOME

- Encourage your child to make comparisons and connections between centimeters and inches. For example, a centimeter is shorter than an inch, but your child can use both units in the same way to measure objects.
- Encourage your child to think about measurement by asking questions such as the following: "How would you decide which length unit to use to measure the remote control?" "Which unit of length would you use to measure the TV?" "When is it more helpful to use a larger unit?" "When is using smaller units helpful?" "Why is it more efficient to measure with a ruler than with inch tiles or centimeter cubes?"
- Play an estimation game with your child. Challenge her to estimate the length of objects around the home, and then have her measure each object to see how close her estimate is to the actual measurement.

TERMS

Inch (in): A standard unit of length. One inch is about as long as 2.5 centimeters.
Foot (ft): A standard unit of length equal to 12 inches.

KEY CONCEPT OVERVIEW

During the next few days, our math class will explore measurement by using both customary units of length (e.g., inches, feet, yards) and metric units of length (e.g., centimeters, meters). We will rotate through various centers and choose appropriate tools to measure a variety of objects. We will develop mental benchmarks for customary units. For example, the width of a quarter is about one inch, and the length of a sheet of paper is about one foot. We will measure the same object twice by using different customary and metric units. This will reinforce prior learning that it takes more smaller units (e.g., centimeters) than larger units (e.g., inches) to measure the same object. Finally, we will measure to compare objects, determining how much longer one is than another.

You can expect to see homework that asks your child to do the following:

- Choose the best unit (e.g., inch, foot, yard) to measure a given object.
- Estimate the length of a given item by using a mental benchmark; then measure the item by using inches, feet, or yards.
- Measure a line by using both centimeters and inches. Compare the measurements and relate the difference to the sizes of the length units.
- Measure and compare two lengths and use addition or subtraction to determine the difference.

SAMPLE PROBLEM

(From Lesson 21)

Sam draws a line that is 11 centimeters long. Susan draws a line that is 8 inches long. Susan thinks her line is shorter than Sam's because 8 is less than 11. Explain why Susan's reasoning might be incorrect.

Susan's reasoning might be incorrect because the size of the length unit matters. The 8-inch line could be longer than the 11-centimeter line because even though 8 is a smaller number than 11, an inch is a larger length unit than a centimeter.
(NOTE: Susan's line is longer than Sam's.)

HOW YOU CAN HELP AT HOME

- Invite your child to create a list of mental benchmarks. For example, a 12-inch ruler can be a mental benchmark for 12 inches or 1 foot; the width of a door is about 1 yard; the width of a quarter is about 1 inch.
- Play an estimation game with your child. Challenge him to estimate the length of objects around the home, and then have him measure each one to see how close his estimate is to the actual measurement.
- Invite your child to draw one line that is 5 centimeters long and another line that is 5 inches long. Then ask her, "Why is one line longer when the number of units is the same?" (The same number of units makes a longer line when using inches rather than centimeters because inches are longer than centimeters.) OR (It takes more centimeters than inches to measure an object because centimeters are shorter.)

TERMS

Yard (yd): A unit of length equal to 36 inches or 3 feet.

MATH

TIPS FOR FAMILIES

KEY CONCEPT OVERVIEW

During the next few days, our math class will solve word problems involving length. We will also learn to use reference points to identify missing points on a number line. For example, on a number line with 10 as one endpoint and 30 as the other endpoint, we will identify the midpoint as 20 . We will also use number lines to show addition and subtraction. For example, we will show 20 centimeters more than 35 centimeters and then write $35+20=55$.

You can expect to see homework that asks your child to do the following:

- Use the RDW process and strip diagrams to solve two-digit addition and subtraction word problems involving customary and metric length units.
- Use known points on a number line to find the distance between hash marks; then use that information to identify other points on the line.
- Model addition and subtraction on a number line, and write an accompanying addition or subtraction sentence.

SAMPLE PROBLEM (FromLesson 25)

On both number lines, the unit length is 20 feet.
a. Show 60 feet more than 80 feet on the number line.

Write an addition sentence to match the number line.
$\mathbf{8 0}+\mathbf{6 0}=\mathbf{1 4 0}$
b. Show 80 feet less than 125 feet on the number line.

Write a subtraction sentence to match the number line.
$\mathbf{1 2 5}-\mathbf{8 0}=45$

- To support your child's use of strip diagrams to compare lengths, invite him to measure and cut paper into strips to compare actual lengths. He can measure the difference between two lengths and relate that to an equation. For example, ask your child to measure and cut a strip of paper 11 inches long and write the total length on the strip. Then have him measure and cut a strip 8 inches long and label that strip with its total length. Help your child line up the ends of the strips to resemble a strip diagram and then measure the difference in lengths. Encourage your child to write a related equation (e.g., $11-8=3$ or $8+3=11$).
- Play Roll and Follow the Rule to help your child maintain or build fluency with addition and subtraction. Give your child a base number such as 9 , and then have her roll a die to find the rule. (If a die is not available, the game may be played using a random number generator on a smart phone.) For example, if she rolls a 5, she adds 5 repeatedly: $9+5=14,14+5=19$, $19+5=24$. Have your child record as many number sentences as she can for 30 seconds and then switch to a different base number and roll the die for a new rule. Play again with subtraction, starting with a base number such as 40 . For example, if your child rolls a 2 , she subtracts 2 repeatedly: $40-2=38,38-2=36,36-2=34$.
- Gather several nickels and invite your child to use them to practice skip-counting by 5's. This will reinforce his familiarity with nickels and prepare him for upcoming lessons on telling time in 5-minute increments.

